浙江省宁波市东恩中学2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】
展开
这是一份浙江省宁波市东恩中学2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,将平行四边形纸片折叠,使顶点恰好落在边上的点处,折痕为,那么对于结论:①,②.下列说法正确的是( )
A.①②都错B.①对②错C.①错②对D.①②都对
2、(4分)在平行四边形中,于点,于点,若,,平行四边形的周长为,则( )
A.B.C.D.
3、(4分)下列各组数中的三个数值分别为三角形的三边长,不能构成直角三角形的是( )
A.3、4、5B.5、12、13C.D.7、24、25
4、(4分)如果,那么代数式的值为( )
A.B.C.D.
5、(4分)下图入口处进入,最后到达的是( )
A.甲B.乙C.丙D.丁
6、(4分)如图是一个直角三角形,它的未知边的长x等于
A.13B.C.5D.
7、(4分)到三角形三条边的距离相等的点是三角形( )的交点.
A.三条中线B.三条角平分线C.三条高D.三条边的垂直平分线
8、(4分)将一个n边形变成(n+2)边形,内角和将( )
A.减少180B.增加180°C.减少360°D.增加360°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为_________.
10、(4分)若式子在实数范围内有意义,则应满足的条件是_____________.
11、(4分)如图,已知,,,当时,______.
12、(4分)一个多边形的各内角都相等,且内外角之差的绝对值为60°,则边数为__________.
13、(4分)已知平行四边形ABCD中,,,AE为BC边上的高,且,则平行四边形ABCD的面积为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知a满足以下三个条件:①a是整数;②关于x的一元二次方程ax2+4x﹣2=0有两个不相等的实数根;③反比例函数的图象在第二、四象限.
(1)求a的值.
(2)求一元二次方程ax2+4x﹣2=0的根.
15、(8分)已知在等腰三角形中,是的中点,是内任意一点,连接,过点作, 交的延长线于点,延长到点,使得,连接.
(1)如图1,求证:四边形是平行四边形;
(2)如图2,若,求证:且;
16、(8分)2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:
(1)本次调查共选取 名居民;
(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;
(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?
17、(10分) (1)解不等式组: (2)解方程:.
18、(10分)先化简,再求值:,其中的值从不等式组的整数解中选取.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)
20、(4分)如图所示的是用大小相同(黑白两种颜色)的正方形砖铺成的地板,一宝物藏在某一块正方形砖下面,宝物在白色区域的概率是 .
21、(4分)如图,梯形中,,点分别是的中点. 已知两底之差是6,两腰之和是12,则的周长是____.
22、(4分)已知点是直线上的一个动点,若点到两坐标轴的距离相等,则点的坐标是__________.
23、(4分)已知分式方程+=,设,那么原方程可以变形为__________
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.
(l)当点C与点O重合时,DE= ;
(2)当CE∥OB时,证明此时四边形BDCE为菱形;
(3)在点C的运动过程中,直接写出OD的取值范围.
25、(10分)如图,是平行四边形的对角线,分别为边和边延长线上的点,连接交于点,且.
(1)求证:;
(2)若是等腰直角三角形,,是的中点,,连接,求的长.
26、(12分)王华同学要证明命题“对角线相等的平行四边形是矩形”是正确的,她先作出了如图所示的平行四边形ABCD,并写出了如下不完整的已知和求证.
已知:如图1,在平行四边形ABCD中, ,求证:平行四边形ABCD是 .
(1)在方框中填空,以补全已知和求证;
(2)按王晓的想法写出证明过程;
证明:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据折叠重合图形全等,已经平行四边形的性质,可以求证①②均正确.
【详解】
折叠后点落在边上的点处
,
又平行四边形 中,
,
又平行四边形 中,
, 是平行四边形,.故选D.
本题综合考查全等三角形的性质、平行四边形的性质、平行线的判定、平行四边形的判定.
2、D
【解析】
已知平行四边形的高AE、AF,设BC=xcm,则CD=(20-x)cm,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.
【详解】
解:设BC=xcm,则CD=(20−x)cm,
根据“等面积法”得,4x=6(20−x),
解得x=12,
∴平行四边形ABCD的面积=4x=4×12=48;
故选D.
本题主要考查了平行四边形的性质,掌握平行四边形的性质是解题的关键.
3、C
【解析】
【分析】根据勾股定理的逆定理,只要验证每组数中的两个较小的数的平方和等于最大的边的平方,即可构成直角三角形;否则,则不能构成.
【详解】A、32+42=25=52,故能构成直角三角形;
B、52+122=169=132,故能构成直角三角形;
C、22+()2=7≠()2,故不能构成直角三角形;
D、72+242=625=252,故能构成直角三角形,
故选C.
【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
4、D
【解析】
先把分母因式分解,再约分得到原式=,然后把x=3y代入计算即可.
【详解】
原式=•(x-y)=,
∵x-3y=0,
∴x=3y,
∴原式==.
故选:D.
本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
5、C
【解析】
根据平行四边形的性质和对角线的定义对命题进行判断即可.
【详解】
等腰梯形也满足此条件,可知该命题不是真命题;
根据平行四边形的判定方法,可知该命题是真命题;
根据题意最后最后结果为丙.
故选C.
本题考查命题和定理,解题关键在于熟练掌握平行四边形的性质和对角线的定义.
6、B
【解析】
由勾股定理得:22+32=x2.
【详解】
由勾股定理得:22+32=x2.
所以,x=
故选:B
本题考核知识点:勾股定理. 解题关键点:熟记勾股定理.
7、B
【解析】
到三角形三条边距离相等的点是三角形的内心.
【详解】
解:到三角形三条边距离相等的点是三角形的内心,即三个内角平分线的交点.
故选:B.
本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
8、D
【解析】
利用多边形的内角和公式即可求出答案.
【详解】
解:n边形的内角和是(n-2)•180°,
n+2边形的内角和是n•180°,
因而(n+2)边形的内角和比n边形的内角和大n•180°-(n-2)•180=360°.
故选:D.
本题考查多边形的内角和公式,熟记内角和公式是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(-1,1)
【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.
【详解】
解:将点向右平移1个单位,再向下平移2个单位得到点,
则点的坐标为(-1,1).
故答案为(-1,1).
本题考查了坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
10、
【解析】
直接利用二次根式的定义分析得出答案.
【详解】
解:二次根式在实数范围内有意义,则x-1≥0,
解得:x≥1.
故答案为:x≥1.
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
11、1或
【解析】
求出直线AB的解析式,设直线x=2交直线AB于点E,可得,再根据三角形面积公式列出方程求解即可.
【详解】
解:如图,
∵A(0,2),B(6,0),
∴直线AB的解析式为
设直线x=2交直线AB于点E,则可得到,
由题意:
解得m=1或
故答案为:1或
本题考查了坐标与图形的性质,解题的关键是学会构建一次函数解决问题,学会利用参数构建方程解决问题,属于中考常考题型.
12、3或1
【解析】
分别表示多边形的每一个内角及与内角相邻的外角,根据题意列方程求解即可.
【详解】
解:因为:多边形的内角和为,又每个内角都相等,
所以 :多边形的每个内角为,
而多边形的外角和为,由多边形的每个内角都相等,则每个外角也都相等,
所以多边形的每个外角为,
所以,
所以,所以或
解得:,经检验符合题意.
故答案为:3或1.
本题考查的是多边形的内角和与外角和,多边形的一个内角与相邻的外角互补,掌握相关的性质是解题的关键.
13、2或1
【解析】
分高AE在△ABC内外两种情形,分别求解即可.
【详解】
①如图,高AE在△ABC内时,在Rt△ABE中,BE==9,
在Rt△AEC中,CE==5,
∴BC=BE+EC=14,
∴S平行四边形ABCD=BC×AE=14×12=1.
②如图,高AE在△ABC外时,BC=BE-CE=9-5=4,
∴S平行四边形ABCD=BC×AE=12×4=2,
故答案为1或2.
本题考查平行四边形的性质.四边形的面积,解题的关键是学会用分类讨论的思想思考问题.
三、解答题(本大题共5个小题,共48分)
14、 (1)-1;(2) x1=2+,x2=2﹣.
【解析】
(1)先根据关于x的一元二次方程ax2+4x﹣2=0有两个不相等的实数根求出a的取值范围,再由反比例函数的图象在二、四象限得出a的取值范围,由a为整数即可得出a的值;
(2)根据a的值得出方程,解方程即可得出结论.
【详解】
解:(1)∵方程有两个不相等的实数根,
∴△=16+8a>0,得a>﹣2且a≠0;
∵反比例函数图象在二,四象限,
∴2a+1<0,得a<﹣,
∴﹣2<a<﹣.
∵a是整数且a≠0,
∴a=﹣1;
(2)∵a=﹣1,
∴一元二次方程为﹣x2+4x﹣2=0,即:x2﹣4x+2=0,
解得:x1=2+,x2=2﹣.
此题主要考查一元二次方程根的判别式、反比例函数的性质和一元二次方程的解法.
15、(1)见解析;(2)见解析;
【解析】
(1)利用平行线的性质证明,即可解答
(2)连接,根据题意得出,再由(1)得出,得到是的中位线,即可解答
【详解】
(1)证明:.
是的中点,.
又,
(ASA).
.
又,
四边形是平行四边形.
(2)证明:如图1,连接,
图1
是的中点,
.
.
.
由(1)知,
,又由(1)知,
.
,
是的中位线.
.
,
.
此题考查等腰三角形的性质,平行线的性质,全等三角形的判定与性质,解题关键在于作辅助线
16、(1)80人;(2)见解析;(3)1120人.
【解析】
(1)根据为A的人数与所占的百分比列式计算即可求出被调查的居民人数;
(2)求出为C的人数,得到所占的百分比,然后乘以360°,从而求出扇形统计图中“C”所对扇形的圆心角的度数,然后补全条形统计图即可;
(3)用全区总人数乘以从不闯红灯的人数所占的百分比,进行计算即可得解.
【详解】
(1)本次调查的居民人数=56÷70%=80人;
(2)为“C”的人数为:80﹣56﹣12﹣4=8人,
“C”所对扇形的圆心角的度数为:×360°=36°
补全统计图如图;
(3)该区从不闯红灯的人数=1600×70%=1120人.
17、 (1);(2)无解.
【解析】
(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1)由①得:,
由②得:,
则不等式组的解集为;
(2)去分母得:,
解得:,
经检验是增根,分式方程无解.
此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
18、-2.
【解析】
试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可.
试题解析:原式=
==
解得-1≤x
相关试卷
这是一份浙江省宁波市效实中学2024年数学九上开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东省中学山市小榄镇2024-2025学年九上数学开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。