浙江省宁波市鄞州实验中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】
展开这是一份浙江省宁波市鄞州实验中学2024-2025学年九年级数学第一学期开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若(x+y)3-xy(x+y)=(x+y)·M(x+y≠0),则M是( )
A.x2+y2 B.x2-xy+y2 C.x2-3xy+y2 D.x2+xy+y2
2、(4分)一元二次方程的解是( )
A.0B.4C.0或4D.0或-4
3、(4分)如图,在所在平面上任意取一点O(与A、B、C不重合),连接OA、OB、OC,分别取OA、OB、OC的中点、、,再连接、、得到,则下列说法不正确的是( )
A.与是位似图形
B.与是相似图形
C.与的周长比为2:1
D.与的面积比为2:1
4、(4分)如图,直线y1=kx+2与直线y2=mx相交于点P(1,m),则不等式mx<kx+2的解集是( )
A.x<0B.x<1C.0<x<1D.x>1
5、(4分)以下列各组数为边长,能组成直角三角形的是( )
A.1,2,3B.2,3,4C.3,4,6D.1,,2
6、(4分)下列哪组条件能够判定四边形 ABCD 是平行四边形?( )
A.AB // CD , AD BCB.AB CD , AD BC
C.A B , C DD.AB AD , CB CD
7、(4分)如图,一棵大树在离地面9米高的处断裂,树顶落在距离树底部12米的处(米),则大树断裂之前的高度为( )
A.9米B.10米C.21米D.24米
8、(4分)如图所示,在▱ABCD中,分别以AB,AD为边向外作等边△ABE,△ADF,延长CB交AE于点G,点G在点A,E之间,连接CG,CF,则下列结论不一定正确的是( )
A.△CDF≌△EBC
B.∠CDF=∠EAF
C.CG⊥AE
D.△ECF是等边三角形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)点 P(a,a-3)在第四象限,则a的取值范围是_____.
10、(4分)平面直角坐标系内,点P(3,﹣4)到y轴的距离是_____.
11、(4分)如图,在矩形 中,,,那么 的度数为_____________.
12、(4分)一次函数的图象如图所示,当时,的取值范围为__________.
13、(4分)把直线向上平移2个单位得到的直线解析式为:_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)计算:;
(2)先化简,再求值:(-4)÷,其中x=1.
15、(8分)如图,已知正方形ABCD的边长为1,P是对角线AC上任意一点,E为AD上的点,且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求证:四边形PMAN是正方形;
(2)求证:EM=BN;
(3)若点P在线段AC上移动,其他不变,设PC=x,AE=y,求y关于x的解析式.
16、(8分)某校为了了解学生对语文、数学、英语、物理四科的喜爱程度(每人只选一科),特对八年级某班进行了调查,并绘制成如下频数和频率统计表和扇形统计图:
(1)求出这次调查的总人数;
(2)求出表中的值;
(3)若该校八年级有学生1000人,请你算出喜爱英语的人数,并发表你的看法.
17、(10分)如图1.点D,E在△ABC的边BC上.连接AD.AE.①AB=AC:②AD=AE:
③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②③;①③②,②③①.
(1)以上三个命题是真命题的为(直接作答)__________________;
(2)选择一个真命题进行证明(先写出所选命题.然后证明).
18、(10分)先化简,再求值:()•,其中x=﹣1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,一次函数y=kx+b的图象与x轴的交点坐标为(1,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=1;④不等式kx+b>0的解集是x>1.其中说法正确的有_________(把你认为说法正确的序号都填上).
20、(4分)准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.
21、(4分)不等式1﹣2x≥3的解是_____.
22、(4分)如图,正方形ABCD中,,点E、F分别在边AD和边BC上,且,动点P、Q分别从A、C两点同时出发,点P自A→F→B方向运动,点Q自C→D→E→C方向运动若点P、Q的运动速度分别为1cm/s,3cm/s,设运动时间为,当A 、C、P、Q四点为顶点的四边形是平行四边形时则t= ________________
23、(4分)某学校八年级班有名同学,名男生的平均身高为名女生的平均身高,则全班学生的平均身高是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某楼盘2018年2月份以每平方米10000元的均价对外销售,由于炒房客的涌入,房价快速增长,到4月份该楼盘房价涨到了每平方米12100元.5月份开始政府再次出台房地产调控政策,逐步控制了房价的连涨趋势,到6月份该楼盘的房价为每平方米12000元.
(1)求3、4两月房价平均每月增长的百分率;
(2)由于房地产调控政策的出台,购房者开始持币观望,为了加快资金周转,房地产开发商对于一次性付清购房款的客户给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,总价优惠10000元,并送五年物业管理费,物业管理费是每平方米每月1.5元,小颖家在6月份打算购买一套100平方米的该楼盘房子,她家该选择哪种方案更优惠?
25、(10分)已知正方形,直线垂直平分线段,点是直线上一动点,连结,将线段绕点顺时针旋转得到线段,连接.
(1)如图,点在正方形内部,连接,求的度数;
(2)如图,点在正方形内部,连接,若,求的值.
26、(12分)如图,直线的函数解析式为,且与轴交于点,直线经过点、,直线、交于点.
(1)求直线的函数解析式;
(2)求的面积;
(3)在直线上是否存在点,使得面积是面积的倍?如果存在,请求出坐标;如果不存在,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】分析:运用提公因式法将等式左边的多项式进行因式分解即可求解.
详解:(x+y)3-xy(x+y)=(x+y)[ (x+y)2-xy]= (x+y) (x2+xy+y2)= (x+y)·M
∴M= x2+xy+y2
故选D.
点睛:此题主要考查了提取公因式法的应用以及完全平方公式的应用,正确运用(x+y)2= x2+2xy+y2是解题关键.
2、C
【解析】
对左边进行因式分解,得x(x-1)=0,进而用因式分解法解答.
【详解】
解:因式分解得,x(x-1)=0,
∴x=0或x-1=0,
∴x=0或x=1.
故选C.
本题考查了用因式分解法解一元二次方程,因式分解法是解一元二次方程的一种简单方法.但在解决类似本题的题目时,往往容易直接约去一个x,而造成漏解.
3、D
【解析】
根据三角形中位线定理得到A1B1=AB,A1C1=AC,B1C1=BC,根据位似变换的概念、相似三角形的性质判断即可.
【详解】
∵点A1、B1、C1分别是OA、OB、OC的中点,
∴A1B1=AB,A1C1=AC,B1C1=BC,
∴△ABC与△A1B1C1是位似图形,A正确;
△ABC与是△A1B1C1相似图形,B正确;
△ABC与△A1B1C1的周长比为2:1,C正确;
△ABC与△A1B1C1的面积比为4:1,D错误;
故选:D.
考查的是位似变换,掌握位似变换的概念、相似三角形的性质是解题的关键.
4、B
【解析】
根据两直线的交点坐标和函数的图象即可求出答案.
【详解】
解:∵直线y1=kx+2与直线y2=mx相交于点P(1,m),
∴不等式mx<kx+2的解集是x<1,
故选:B.
本题考查了对一次函数与一元一次不等式的应用,主要考查学生的观察图形的能力和理解能力,题目比较好,但是一道比较容易出错的题目.
5、D
【解析】
根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.
【详解】
解:A、12+22=5≠32,故不符合题意;
B、22+32=13≠42,故不符合题意;
C、32+42=25≠62,故不符合题意;
D、12+=4=22,符合题意.
故选D.
本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.
6、B
【解析】
根据平行四边形的判定进行判断即可.
【详解】
解:A选项为一组对边平行,一组对边相等,不能判定四边形为平行四边形,故本选项错误;
B选项为两组对边相等,可以判定四边形为平行四边形,故本选项正确;
C选项为两组邻角相等,不能判定四边形为平行四边形,故本选项错误;
D选项为两组邻边相等,不能判定四边形为平行四边形,故本选项错误.
故选B.
本题主要考查平行四边形的判定:1、两组对边分别平行的四边形是平行四边形;
2、一组对边平行且相等的四边形是平行四边形;
3、两组对边分别相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形;
5、对角线互相平分的四边形是平行四边形.
7、D
【解析】
根据勾股定理列式计算即可.
【详解】
由题意可得:,
AB+BC=15+9=1.
故选D.
本题考查勾股定理的应用,关键在于熟练掌握勾股定理的公式.
8、C
【解析】
A.在平行四边形ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
DF=BC,
∠CDF=∠EBC,
CD=EB,
∴△CDF≌△EBC(SAS),故A正确;
B.在平行四边形ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故B正确;
C. .当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故C错误;
D. 同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故D正确;
故选C.
点睛:本题考查了全等三角形的判定、等边三角形的判定和性质、平行四边形的性质等知识,综合性强.考查学生综合运用数学知识的能力.根据题意,结合图形,对选项一一求证,判定正确选项.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、0<a<3
【解析】
根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
【详解】
∵点P(a,a-3)在第四象限,
∴,解得0<a<3.
10、3
【解析】
根据平面直角坐标系的特点,可知到y轴的距离为横坐标的绝对值,因此可知P点到y轴的距离为3.
故答案为3.
11、30°.
【解析】
由矩形的性质得出∠ADC=90°,OA=OD,得出∠ODA=∠DAE,由已知条件求出∠ADE,得出∠DAE、∠ODA,即可得出∠BDC的度数.
【详解】
解:如图所示:
∵四边形ABCD是矩形,
∴∠ADC=90°,OA=AC,OD=BD,AC=BD,
∴OA=OD,
∴∠ODA=∠DAE,
∵∠ADE=∠CDE,
∴∠ADE=×90°=30°,
∵DE⊥AC,
∴∠AED=90°,
∴∠DAE=60°,
∴∠ODA=60°,
∴∠BDC=90°-60°=30°;
故答案为30°.
本题考查了矩形的性质、等腰三角形的判定与性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
12、
【解析】
根据函数图象与y轴的交点坐标和函数的增减性可直接解答.
【详解】
解:∵一次函数y=kx+b(k≠0)与y轴的交点坐标为(0,3),y随x的增大而减小,
∴当x>0时,y<3.
故答案为:y<3.
此题考查一次函数的图象,运用观察法解一元一次不等式通常是从交点观察两边得解.
13、
【解析】
直接根据一次函数图象与几何变换的有关结论求解.
【详解】
直线y=2x向上平移2个单位后得到的直线解析式为y=2x+2.
故答案为y=2x+2.
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
三、解答题(本大题共5个小题,共48分)
14、(1)-1;(2)x-2,-1
【解析】
(1)先通分,再把分子相加减即可;
(2)先算括号里面的,再算除法即可.
【详解】
解:(1)原式=
==
=-1;
(2)原式=•
=•
=x-2,
当x=1时,原式=1-2=-1.
本题考查的是分式的混合运算,熟知分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的是解答此题的关键.
15、 (1)见解析;(2)见解析;(3) y=﹣x+1.
【解析】
(1)由四边形ABCD是正方形,易得∠BAD=90°,AC平分∠BAD,又由PM⊥AD,PN⊥AB,即可证得四边形PMAN是正方形;
(2)由四边形PMAN是正方形,易证得△EPM≌△BPN,即可证得:EM=BN;
(3)首先过P作PF⊥BC于F,易得△PCF是等腰直角三角形,继而证得△APM是等腰直角三角形,可得AP=AM=(AE+EM),即可得方程﹣x=(y+x),继而求得答案.
【详解】
(1)∵四边形ABCD是正方形,
∴AC平分∠BAD,
∵PM⊥AD,PN⊥AB,
∴PM=PN,
又∵∠BAD=90°,∠PMA=∠PNA=90°,
∴四边形PMAN是矩形,
∴四边形PMAN是正方形;
(2)∵四边形PMAN是正方形,
∴PM=PN,∠MPN=90°,
∵∠EPB=90°,
∴∠MPE=∠NPB,
在△EPM和△BPN中,
,
∴△EPM≌△BPN(ASA),
∴EM=BN;
(3)过P作PF⊥BC于F,如图所示:
∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC=1,∠PCF=45°,
∴AC==,△PCF是等腰直角三角形,
∴AP=AC﹣PC=﹣x,BN=PF=x,
∴EM=BN=x,
∵∠PAM=45°,∠PMA=90°,
∴△APM是等腰直角三角形,
∴AP=AM=(AE+EM),
即﹣x=(y+x),
解得:y=﹣x+1.
本题是四边形的综合题.考查了正方形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的判定与性质.注意准确作出辅助线、掌握方程思想的应用是解此题的关键.
16、(1)60人;(2)a=30,b=0.2,c=0.1,d=12;(3)喜爱英语的人数为100人,看法见解析.
【解析】
(1)用喜爱英语科目的人数除以其所占比例;
(2)根据频数=频率×总人数求解可得;
(3)用八年级总人数乘以样本中喜爱英语科目人数所占比例,计算即可.
【详解】
解:(1)这次调查的总人数为:6÷(36°÷360°)=60(人);
(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人);
(3)喜爱英语的人数为1000×0.1=100(人),
看法:由扇形统计图知喜爱语文的人数占总人数的一半,是四个学科中喜爱人数最多的科目.
本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计图或统计表中得到必要的信息是解决问题的关键.用到的知识点为:频数=频率×总人数.
17、(1)①②③;①③②;②③①. (2)见解析
【解析】
(1)根据真命题的定义即可得出结论,
(2)根据全等三角形的判定方法及全等三角形的性质即可证明.
【详解】
解:(1)①②③;①③②;②③①.
(2)如①③②
AB=AC
=
BD=CE
△ABD≌△ACE
AD=AE
18、1﹣2.
【解析】
先根据分式混合运算的法则把括号里的进行化简,然后进行乘法运算,再把x的值代入进行计算即可.
解:原式=
=3(x+1)﹣x+1=3x+3﹣x+1=1x+3.
当x=﹣1时,原式=1×(﹣1)﹣1=1﹣2.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、①②③
【解析】
①因为一次函数的图象经过二、四象限,所以y随x的增大而减小,故本项正确;
②因为一次函数的图象与y轴的交点在正半轴上,所以b>0,故本项正确;
③因为一次函数的图象与x轴的交点为(1,0),所以当y=0时,x=1,即关于x的方程kx+b=0的解为x=1,故本项正确;
④由图象可得不等式kx+b>0的解集是x<1,故本项是错误的.故正确的有①②③.
20、1.25
【解析】
设小路的宽度为,根据图形所示,用表示出小路的面积,由小路面积为80平方米,求出未知数.
【详解】
设小路的宽度为,由题意和图示可知,小路的面积为
,解一元二次方程,由,可得.
本题综合考查一元二次方程的列法和求解,这类实际应用的题目,关键是要结合题意和图示,列对方程.
21、x≤﹣1.
【解析】
根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.
【详解】
∵﹣2x≥3﹣1,∴﹣2x≥2,则x≤﹣1,故答案为:x≤﹣1.
此题考查解一元一次不等式,难度不大
22、3s或6s
【解析】
根据两点速度和运动路径可知,点Q在EC上、点P在AF上或和点P在BC上时、点Q在AD上时,A、C、P、Q四点为顶点的四边形是平行四边形.根据平行四边形性质构造方程即可.
【详解】
由P、Q速度和运动方向可知,当Q运动EC上,P在AF上运动时,
若EQ=FP,A、C、P、Q四点为顶点的四边形是平行四边形
∴3t-7=5-t
∴t=3
当P、Q分别在BC、AD上时
若QD=BP,形A、C、P、Q四点为顶点的四边形是平行四边形
此时Q点已经完成第一周
∴4-[3(t-4)-4]=t-5+1
∴t=6
故答案为:3s或6s.
本题考查了正方形的性质,平行四边形的判定和性质,动点问题的分类讨论和三角形全等有关知识.解答时注意分析两个动点的相对位置关系.
23、
【解析】
只要运用求平均数公式:即可求得全班学生的平均身高.
【详解】
全班学生的平均身高是:.
故答案为:1.
本题考查的是样本平均数的求法.熟记公式是解决本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)3、4两月房价平均每月增长的百分率为10%;(2)选择第一种方案更优惠.
【解析】
(1)设3、4两月房价平均每月增长的百分率为x,根据2月份及4月份该楼盘房价,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据两种优惠方案,分别求出选择两种方案优惠总额,比较后即可得出结论.
【详解】
解:(1)设3、4两月房价平均每月增长的百分率为x,
根据题意得:10000(1+x)2=12100,
解得:x1=0.1=10%,x2=﹣2.1(舍去).
答:3、4两月房价平均每月增长的百分率为10%.
(2)选择第一种优惠总额=100×12000×(1﹣0.98)=24000(元),
选择第二种优惠总额=100×1.5×12×5+10000=19000(元).
∵24000>19000,
∴选择第一种方案更优惠.
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)分别求出选择两种方案优惠总额.
25、(1);(2).
【解析】
(1)连接MC,利用等边对等角可知,于是
(2)连,过作交于点.证得,由此证得三角形NCD为等腰三角形,设,用x表示ND2和CD2即可求得
【详解】
(1)连.
∵为垂直平分线
∴
又∵
∴
∴
∴
即
(2)连,过作交于点
由(1)可得
∴
又∵
∴
∴,
设
交于
交于,交于
在中,
∴
∴
∴
本题考查了正方形的性质、旋转的性质、等腰三角形的性质和判定、全等三角形的性质和判定,属于较难的综合题,熟练掌握相关性质是解题的关键.
26、(1);(2)3;(3)在直线上存在点或,使得面积是面积的倍.
【解析】
(1)根据点A、B的坐标利用待定系数法即可求出直线l2的函数解析式;
(2)令y=-2x+4=0求出x值,即可得出点D的坐标,联立两直线解析式成方程组,解方程组即可得出点C的坐标,再根据三角形的面积即可得出结论;
(3)假设存在点P,使得△ADP面积是△ADC面积的1.5倍,根据两三角形面积间的关系|yP|=1.5|yC|=3,再根据一次函数图象上点的坐标特征即可求出点P的坐标.
【详解】
解:(1)设直线的函数解析式为,
将、代入,
,解得:,
直线的函数解析式为.
(2)联立两直线解析式成方程组,
,解得:,
点的坐标为.
当时,,
点的坐标为.
.
(3)假设存在.
面积是面积的倍,
,
当时,,
此时点的坐标为;
当时,,
此时点的坐标为.
综上所述:在直线上存在点或,使得面积是面积的倍.
故答案为(1);(2)3;(3)在直线上存在点或,使得面积是面积的倍.
本题考查两条直线相交或平行问题、一次函数图象上点的坐标特征以及待定系数法求一次函数解析式,根据给定点的坐标利用待定系数法求出函数解析式是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
科目
频数
频率
语文
0.5
数学
12
英语
6
物理
0.2
相关试卷
这是一份2024-2025学年浙江省宁波市鄞州实验中学九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省宁波市鄞州第二实验中学2023-2024学年九年级下学期开学考数学试题(解析版),共29页。试卷主要包含了5C, 如图,抛物线等内容,欢迎下载使用。
这是一份浙江省宁波市鄞州第二实验中学2023-2024学年九年级下学期开学考数学试题(原卷版),共8页。试卷主要包含了5C, 如图,抛物线等内容,欢迎下载使用。