浙江省绍兴市诸暨市暨阳初级中学2025届九上数学开学达标检测模拟试题【含答案】
展开
这是一份浙江省绍兴市诸暨市暨阳初级中学2025届九上数学开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知△ABC和△A′B′C′是位似图形.△A′B′C′的面积为6cm2,周长是△ABC的一半.AB=8cm,则AB边上高等于 ( )
A.3 cm B.6 cm C.9cm D.12cm
2、(4分)如图,在中,点、、分别在边、、上,且,.下列说法中不正确的是( )
A.四边形是平行四边形
B.如果,那么四边形是矩形.
C.如果平分,那么四边形是正方形.
D.如果且,那么四边形是菱形.
3、(4分)某校八年级有452名学生,为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计.在这个问题中,样本是( )
A.452名学生B.抽取的50名学生
C.452名学生的课外阅读情况D.抽取的50名学生的课外阅读情况
4、(4分)若把分式的x、y同时扩大3倍,则分式值( )
A.不变B.扩大为原来的3倍C.缩小为原来的D.扩大为原来的9倍
5、(4分)下列运算错误的是
A.B.
C.D.
6、(4分)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为的菱形,剪口与折痕所成的角的度数为()
A.B.
C.D.
7、(4分)如图,直线y=-x+2与x轴交于点A,则点A的坐标是( )
A.(2,0)B.(0,2)C.(1,1)D.(2,2)
8、(4分)某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为( )
A.x(27﹣3x)=75B.x(3x﹣27)=75
C.x(30﹣3x)=75D.x(3x﹣30)=75
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知反比例函数,当时,y的取值范围是________.
10、(4分)计算:=_____;|﹣|=_____.
11、(4分)如图,在平行四边形ABCD中,,,,则平行四边形ABCD的面积为___________.
12、(4分)根据图中的程序,当输入时,输出的结果______.
13、(4分)如图,已知,,,,若线段可由线段围绕旋转中心旋转而得,则旋转中心的坐标是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.
(1)求证:四边形DFCE是菱形;
(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.
15、(8分) “中华人民共和国道路交通管理条例”规定:小汽车在高速公路上的行驶速度不得超过120千米/小时,不得低于60千米/小时,如图,一辆小汽车在高速公路上直道行驶,某一时刻刚好行驶到“车速检测点”正前方60米处,过了3秒后,测得小汽车位置与“车速检测点”之间的距离为100米,这辆小汽车是按规定行驶吗?
16、(8分)如图,从电线杆离地面5m处向地面拉一条长13m的缆绳,这条缆绳在地面的固定点距离电线杆底部有多远?
17、(10分)为积极响应新旧功能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为35万元时,年销售量为550台;每台售价为40万元时,年销售量为500台.假定该设备的年销售量(单位:台)和销售单价(单位:万元)成一次函数关系.
(1)求年销售量与销售单价的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于60万元,如果该公司想获得8000万元的年利润,则该设备的销售单价应是多少万元?
18、(10分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点C与直线AD交于点A(1,2),点D的坐标为(0,1)
(1)求直线AD的解析式;
(2)直线AD与x轴交于点B,请判断△ABC的形状;
(3)在直线AD上是否存在一点E,使得4S△BOD=S△ACE,若存在求出点E的坐标,若不存在说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若分式的值是0,则x的值为________.
20、(4分)在直角ΔABC中,∠BAC=90°,AC=3,∠B=30°,点D在BC上,若ΔABD为等腰三角形,则BD=___________.
21、(4分)如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.
22、(4分)如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n1
【解析】
∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),
∴关于x的不等式mx+n<x+n-2的解集为x>1,
故答案为x>1.
23、1
【解析】
根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.
【详解】
解:∵AM⊥BM,点D是AB的中点,
∴DM=AB=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=1,
故答案为:1.
点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、【几何背景】:详见解析;【知识迁移】:详见解析;【拓展应用】:
【解析】
几何背景:由 Rt△ABD中,AD1=AB1﹣BD1,Rt△ACD中,AD1=AC1﹣CD1,则结论可证.
知识迁移:过P点作PE⊥AD,延长EP交BC于F,可证四边形ABFE,四边形DCFE是矩形.根据上面的结论求得PA、PB、PC、PD之间的数量关系.
拓展应用:根据勾股定理可列方程组,可求PD=c,PC=c即可得.
【详解】
解:几何背景:在Rt△ABD中,AD1=AB1﹣BD1
Rt△ACD中,AD1=AC1﹣CD1,
∴AB1﹣BD1=AC1﹣CD1,
∴AB1﹣AC1=BD1﹣CD1.
知识迁移:BP1﹣PC1 =BF1﹣CF1.
如 图:
过P点作PE⊥AD,延长EP交BC于F
∴四边形ABCD是矩形
∴AD∥BC∠BAD=∠ADC=∠DCB=∠ABC=90°
又∵PE⊥AD
∴PF⊥BC
∵PE是△APD的高
∴PA1﹣PD1=AE1﹣DE1.
∵PF是△PBC的高
∴BP1﹣PC1 =BF1﹣CF1.
∵∠BAD=∠ADC=∠DCB=∠ABC=90°,PE⊥AD,PF⊥BC
∴四边形ABFE,四边形DCFE是矩形
∴AE=BF,CF=DE
∴PA1﹣PD1=BP1﹣PC1.
拓展应用:∵PA1﹣PD1=BP1﹣PC1.
∴PA1﹣PB1=c1.
∴PD1﹣PC1=c1.
且PD1+PC1=c1.
∴PD=c,PC=c
∴,
故答案为.
本题考查了四边形的综合题,矩形的性质,勾股定理,关键是利用勾股定理列方程组.
25、(1);(2)或;(3),理由见解析。
【解析】
(1)联立两函数即可求出C点坐标;
(2)根据题意写出M,D,E的坐标,再根据即可列式求解;
(3)过作,交的延长线于,设交于点,得到得为等腰直角三角形,再证明,故可得,即可求解.
【详解】
(1)联立,解得
∴
(2)
依题意得
解得或
(3),理由如下:
过作,交的延长线于,设交于点
易得为等腰直角三角形,
易得
此题主要考查一次函数的应用,解题的关键是根据题意作出辅助线、熟知一次函数的图像及全等三角形的判定与性质.
26、(1)、、,作图见解析;(2)6
【解析】
(1)利用关于原点对称的点的坐标特征写出点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用三角形面积公式计算.
【详解】
解:(1)如图,△A1B1C1为所作,
∴、、;
(2);
本题考查三角形的面积计算,难度不大,解决本题的关键是正确掌握关于原点对称的点的坐标的特点.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份浙江省绍兴市诸暨市2024年数学九上开学调研模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省绍兴市暨阳2024年九年级数学第一学期开学考试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届浙江省绍兴市元培中学九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。