搜索
    上传资料 赚现金
    英语朗读宝

    浙江省温州市实验学校2024年九上数学开学预测试题【含答案】

    浙江省温州市实验学校2024年九上数学开学预测试题【含答案】第1页
    浙江省温州市实验学校2024年九上数学开学预测试题【含答案】第2页
    浙江省温州市实验学校2024年九上数学开学预测试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省温州市实验学校2024年九上数学开学预测试题【含答案】

    展开

    这是一份浙江省温州市实验学校2024年九上数学开学预测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在四边形ABCD中,AC与BD相交于点O,AD∥BC,AC=BD,那么下列条件中不能判定四边形ABCD是矩形的是( )
    A.AD=BCB.AB=CDC.∠DAB=∠ABCD.∠DAB=∠DCB
    2、(4分)解关于的方程(其中为常数)产生增根,则常数的值等于( )
    A.-2B.2C.-1D.1
    3、(4分)如图,直线与直线交于点,则方程组解是( )
    A.B.C.D.
    4、(4分)小丽家在学校北偏西60°方向上,距学校4km,以学校所在位置为坐标原点建立直角坐标系,1km为一个单位长度,则小丽家所在位置的坐标为( )
    A.(﹣2,﹣2)B.(﹣2,2)C.(2,﹣2)D.(﹣2,﹣2)
    5、(4分)一次函数的图像上有点,B(2,),则下面关系正确的是( )
    A.>>B.>>C.>>D.>>
    6、(4分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是( )
    A.Q(3,-120°)B.Q(3,240°)C.Q(3,-500°)D.Q(3,600°)
    7、(4分)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度的一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连接AC,BC,AD,BD,根据她的作图方法可知四边形ADBC一定是( )
    A.菱形B.矩形C.正方形D.梯形
    8、(4分)计算的值为( )
    A.9B.1C.4D.0
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)命题“如果a2=b2,那么a=b.”的否命题是__________.
    10、(4分)已知:线段
    求作:菱形,使得且.
    以下是小丁同学的作法:
    ①作线段;
    ②分别以点,为圆心,线段的长为半径作弧,两弧交于点;
    ③再分别以点,为圆心,线段的长为半径作弧,两弧交于点;
    ④连接,,.
    则四边形即为所求作的菱形.(如图)
    老师说小丁同学的作图正确.则小丁同学的作图依据是:_______.
    11、(4分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形AnBn∁nCn﹣1按如图方式放置,点A1、A2、A3、…在直线y=x+1上,点C1、C2、C3、…在x轴上.已知A1点的坐标是(0,1),则点B3的坐标为_____,点Bn的坐标是_____.
    12、(4分)若关于的一元二次方程有实数根,则的取值范围为______.
    13、(4分)如图,已知直线y=x与反比例函数y=的图象交于A,B两点,且点A的横坐标为.在坐标轴上找一点C,直线AB上找一点D,在双曲线y=找一点E,若以O,C,D,E为顶点的四边形是有一组对角为60∘的菱形,那么符合条件点D的坐标为___.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)在平面直角坐标系xOy中,直线l1:过点A(3,0),且与直线l2:交于点B(m,1).
    (1)求直线l1:的函数表达式;
    (2)过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,直接写出n的取值范围.
    15、(8分)如图,在△ABC中,E点是AC的中点,其中BD=2,DC=6,BC=2,AD=,求DE的长.
    16、(8分)已知A(0,2),B(4,0),C(6,6)
    (1)在图中的直角坐标系中画出△ABC;
    (2)求△ABC的面积.
    17、(10分)如图是一个三级台阶,它的第一级的长、宽、高分别为20dm,3dm,2dm,点和点是这个台阶两个相对的端点,点处有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点的最短路程是多少?
    18、(10分)已知,直线y=2x+3与直线y=﹣2x﹣1.
    (1)求两直线与y轴交点A,B的坐标;
    (2)求两直线交点C的坐标;
    (3)求△ABC的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)计算:=_____________.
    20、(4分)八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.
    21、(4分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有句五步,股十二步.问句中容方几何.”其大意是:如图,Rt△ABC的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为_____.
    22、(4分)函数中,自变量的取值范围是 .
    23、(4分)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:
    则这10双运动鞋尺码的众数和中位数分别为________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在中,分别是的平分线.
    求证:四边形是平行四边形.
    25、(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是AB的中点.已知AC=8cm,BD=6cm,求OE的长.
    26、(12分)(2017四川省乐山市)如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    有一个角是直角的平行四边形是矩形;有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形,依据矩形的判定进行判断即可。
    【详解】
    解:A.当AD=BC,AD∥BC时,四边形ABCD是平行四边形,再依据AC=BD,可得四边形ABCD是矩形;
    B.当AB=CD,AD∥BC时,四边形ABCD不一定是平行四边形,也可能是等腰梯形;
    C.当∠DAB=∠ABC,AD∥BC时,∠DAB=∠CBA=90°,再根据AC=BD,可得△ABD≌△BAC,进而得到AD=BC,即可得到四边形ABCD是矩形;
    D.当∠DAB=∠DCB,AD∥BC时,∠ABC+∠BCD=180°,即可得出四边形ABCD是平行四边形,再依据AC=BD,可得四边形ABCD是矩形;
    故选:B.
    此题考查矩形的判定,解题关键在于掌握判定法则
    2、C
    【解析】
    分式方程去分母转化为整式方程,由分式方程有增根,得到x-5=0,求出x的值,代入整式方程计算即可求出m的值.
    【详解】
    解:去分母得:x-6+x-5=m,
    由分式方程有增根,得到x-5=0,即x=5,
    把x=5代入整式方程得:m=-1,
    故选:C.
    此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
    3、B
    【解析】
    根据一次函数与二元一次方程组的关系解答即可.
    【详解】
    ∵直线与直线交于点,
    ∴方程组即的解是.
    故选B.
    本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.
    4、B
    【解析】
    根据题意联立直角坐标系,再利用勾股定理即可求解.
    【详解】
    解:由题意可得:AO=4km,
    ∠AOB=30°,
    则AB=2,BO=,
    故A点坐标为:(﹣2,2).
    故选:B.
    此题主要考查直角坐标系的应用,解题的关键是根据题意作出直角坐标系进行求解.
    5、C
    【解析】
    根据一次函数时,y随x的增大而减小,可得,的大小关系,再根据不等式的性质判断,与b的大小关系.
    【详解】
    ∵一次函数中,
    ∴y随x的增大而减小




    ∴,
    即,

    故选C.
    本题考查一次函数的增减性,熟练掌握时,一次函数y随x的增大而减小是解题的关键.
    6、C
    【解析】
    根据中心对称的性质进行解答即可.
    【详解】
    ∵P(3,60°)或P(3,﹣300°)或P(3,420°)
    ∴点P关于点O成中心对称的点Q的极坐标为Q(3,240°)或(3,-120°)或(3,600°),
    ∴C选项不正确,
    故选C.
    本题考查了极坐标的定义,中心对称,正确理解极坐标的定义、熟练掌握中心对称的性质是解题的关键.
    7、A
    【解析】
    根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形.
    【详解】
    解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,
    ∴AC=AD=BD=BC,
    ∴四边形ADBC一定是菱形,
    故选A.
    此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.
    8、B
    【解析】
    原式第一项利用绝对值定义计算,第二项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果.
    【详解】
    原式=4+1-4=1
    故选B
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、如果,那么
    【解析】
    根据否命题的定义,写出否命题即可.
    【详解】
    如果,那么
    故答案为:如果,那么.
    本题考查了否命题的问题,掌握否命题的定义以及性质是解题的关键.
    10、三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形
    【解析】
    利用作法和等边三角形的判定与性质得到∠A=60°,然后根据菱形的判定方法得到四边形ABCD为菱形.
    【详解】
    解:由作法得AD=BD=AB=a,CD=CB=a,
    ∴△ABD为等边三角形,AB=BC=CD=AD,
    ∴∠A=60°,四边形ABCD为菱形,
    故答案为:三边都相等的三角形是等边三角形;等边三角形的每个内角都是60°;四边都相等的四边形是菱形.
    本题考查了尺规作图,及菱形的判定,熟练掌握尺规作图,及菱形的判定知识是解决本题的关键.
    11、(7,4)(2n﹣1,2n﹣1).
    【解析】
    根据一次函数图象上点的坐标特征可得出点A1的坐标,结合正方形的性质可得出点B1的坐标,同理可得出点B2、B3、B4、…的坐标,再根据点的坐标的变化即可找出点Bn的坐标.
    【详解】
    当x=0时,y=x+1=1,
    ∴点A1的坐标为(0,1).
    ∵四边形A1B1C1O为正方形,
    ∴点B1的坐标为(1,1).
    当x=1时,y=x+1=2,
    ∴点A2的坐标为(1,2).
    ∵四边形A2B2C2C1为正方形,
    ∴点B2的坐标为(3,2).
    同理可得:点A3的坐标为(3,4),点B3的坐标为(7,4),点A4的坐标为(7,8),点B4的坐标为(15,8),…,
    ∴点Bn的坐标为(2n﹣1,2n﹣1).
    故答案为:(7,4), (2n﹣1,2n﹣1)
    本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合正方形的性质找出点Bn的坐标是解题的关键.
    12、
    【解析】
    根据一元二次方程的定义和根的判别式得到△=b2-4ac≥0,然后求出不等式的解即可.
    【详解】
    解: 有实数根
    ∴△=b2-4ac≥0即,解得:
    即的取值范围为:
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
    13、 (3,3)或(−3,−3).
    【解析】
    把A的横坐标代入直线解析式求出y的值,确定出A坐标,把A坐标代入反比例解析式求出k的值,确定出反比例解析式,设D(a,a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60°,以O、C、D、E为顶点的四边形是有一组对角为60°的菱形,D在直线y=x上,得到点C只能在y轴上,得出E横坐标为a,把x=a代入反比例函数解析式求出y的值,确定出E坐标,由菱形的边长相等得到OD=ED,进而求出a的值,确定出满足题意D的坐标即可.
    【详解】
    把x=代入y=x,得:y=3,即A(,3),
    把点A(,3)代入y=kx,解得:k=3,
    ∴反比例函数解析式为y=,
    设D点坐标(a,a),由直线AB解析式可知,直线AB与y轴正半轴夹角为60∘,
    ∵以O、C. D. E为顶点的四边形是有一组对角为60∘的菱形,D在直线y=x上,
    ∴点C只能在y轴上,
    ∴E点的横坐标为a,
    把x=a代入y=,得:y=,即E(a, ,
    根据OE=ED,即:,
    解得:a=±3,
    则满足题意D为(3,3)或(−3,−3).
    故答案为:(3,3)或(−3,−3).
    考核知识点:反比例函数与几何结合.数形结合分析问题是关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)
    【解析】
    (1)利用求出点B的坐标,再将点A、B的坐标代入求出答案;
    (2)求出直线与直线的交点坐标即可得到答案.
    【详解】
    (1)解:∵ 直线l2:过点B(m,1),

    ∴m=2,
    ∴B(2,1),
    ∵直线l1:过点A(3,0)和点B(2,1)
    ∴,
    解得:,
    ∴直线l1的函数表达式为
    (2)解方程组,得,
    当过动点P(n,0)且垂于x轴的直线与l1、l2分别交于点C、D,当点C位于点D上方时,即点P在图象交点的左侧,

    此题考查一次函数的解析式,一次函数图象交点坐标与方程组的关系,(2)是难点,确定交点坐标后,在交点的左右两侧取点P通过作垂线即可判断出点P的位置.
    15、
    【解析】
    根据勾股定理的逆定理求出∠BDC=90°,求出线段AC长,根据直角三角形斜边上中线性质求出即可.
    【详解】
    ∵BD2+CD2=22+62=(2)2=BC2,
    ∴△BDC为直角三角形,∠BDC=90°,
    在Rt△ADC中,∵CD=6,AD=2,
    ∴AC2=(2)2+62=60,
    ∴AC=2,
    ∵E点为AC的中点,
    ∴DE=AC=.
    本题考查了勾股定理、勾股定理的逆定理、直角三角形斜边上中线性质等知识点,能求出△ADC是直角三角形是解此题的关键.
    16、(1)在平面直角坐标系中画出△ABC如图所示,见解析;(2)△ABC的面积=1.
    【解析】
    (1)在坐标系内描出各点,再顺次连接即可;
    (2)根据△ABC的面积等于正方形的面积减去3个三角形的面积求出即可.
    【详解】
    解:(1)在平面直角坐标系中画出△ABC如图所示:
    (2)△ABC的面积=6×6-×4×2-×2×6-×4×6=36-4-6-12=1.
    故答案为:(1)在平面直角坐标系中画出△ABC如图所示,见解析;(2)△ABC的面积=1.
    本题考查坐标和图形的关系以及三角形的面积,找到各点的对应点,是解题的关键.
    17、最短路程是25dm.
    【解析】
    先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.
    【详解】
    三级台阶平面展开图为长方形,长为20dm,宽为,
    则蚂蚁沿台阶面爬行到点最短路程是此长方形的对角线长.
    可设蚂蚁台阶面爬行到点最短路程为.
    由勾股定理,得,
    解得.
    因此,蚂蚁沿着台阶面爬到点的最短路程是25dm.
    此题考查平面展开-最短路径问题,解题关键在于利用勾股定理进行计算.
    18、(1)A(0,3),B(0,-1);
    (2)点C的坐标为(-1,1);
    (3)S△ABC= 2.
    【解析】
    (1)利用待定系数法即可解决问题;
    (2)构建方程组确定交点坐标即可;
    (3)过点C作CD⊥AB交y轴于点D,根据S△ABC=AB•CD计算即可.
    【详解】
    (1)在y=2x+3中,当x=0时,y=3,即A(0,3);
    在y=-2x-1中,当x=0时,y=-1,即B(0,-1);
    (2)依题意,得,
    解得;
    ∴点C的坐标为(-1,1);
    (3)过点C作CD⊥AB交y轴于点D;
    ∴CD=1;
    ∵AB=3-(-1)=4;
    ∴S△ABC=AB•CD=×4×1=2.
    本题考查两条直线平行或相交问题、三角形的面积等知识,解题的关键是熟练掌握基本知识,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据二次根式的性质和二次根式的化简,可知==.
    故答案为.
    此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.
    20、70%
    【解析】
    利用合格的人数即50-10-5=35人,除以总人数即可求得.
    【详解】
    解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=70%.
    故答案是:70%.
    本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    21、
    【解析】
    根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.
    【详解】
    ∵四边形CDEF是正方形,AC=5,BC=12,
    ∴CD=ED,DE∥CF,
    设ED=x,则CD=x,AD=5-x,
    ∵DE∥CF,
    ∴∠ADE=∠C,∠AED=∠B,
    ∴△ADE∽△ACB,
    ∴,
    ∴,
    解得:x=,
    故答案为.
    此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.
    22、x≠1
    【解析】
    ,x≠1
    23、1,1.
    【解析】
    本题考查统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
    【详解】
    数据1出现了3次最多,这组数据的众数是1,
    共10个数据,从小到大排列此数据处在第5、6位的数都为1,故中位数是1.
    故答案为:1,1.
    本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.
    二、解答题(本大题共3个小题,共30分)
    24、详见解析.
    【解析】
    由四边形ABCD是平行四边形可得,CE∥AF,∠DAB=∠DCB,又AE、CF分别平分∠DAB、∠BCD,所以∠2=∠3,可证四边形AFCE是平行四边形.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴CE∥AF,∠DAB=∠DCB,
    ∵AE、CF分别平分∠DAB、∠BCD,
    ∴∠2=∠3,
    又∠3=∠CFB,
    ∴∠2=∠CFB,
    ∴AE∥CF,
    又CE∥AF,
    ∴四边形AFCE是平行四边形.
    25、OE=cm
    【解析】
    根据菱形的性质及三角形中位线定理解答.
    【详解】
    ∵ABCD是菱形,∴OA=OC,OB=OD,OB⊥OC.
    又∵AC=8cm,BD=6cm,∴OA=OC=4cm,OB=OD=3cm.
    在直角△BOC中,由勾股定理得:BC5(cm).
    ∵点E是AB的中点,∴OE是△ABC的中位线,∴OEcm.
    本题考查了菱形的性质及三角形中位线定理.求出菱形的边长是解题的关键.
    26、证明见解析.
    【解析】
    试题分析:根据平行四边形的性质可得AD=BC,AD∥BC,再证出BE=DF,得出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.
    试题解析:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵DF=DC,BE=BA,∴BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.
    考点:平行四边形的性质.
    题号





    总分
    得分
    批阅人
    尺码(厘米)
    25
    25.5
    26
    26.5
    27
    购买量(双)
    1
    2
    3
    2
    2

    相关试卷

    浙江省温州市民办2024年九上数学开学质量检测模拟试题【含答案】:

    这是一份浙江省温州市民办2024年九上数学开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省温州市平阳县2025届数学九上开学检测模拟试题【含答案】:

    这是一份浙江省温州市平阳县2025届数学九上开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省温州市鹿城区温州市实验中学2025届数学九上开学质量跟踪监视模拟试题【含答案】:

    这是一份浙江省温州市鹿城区温州市实验中学2025届数学九上开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map