终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    浙江省义乌市六校联考2024-2025学年数学九年级第一学期开学达标检测试题【含答案】

    立即下载
    加入资料篮
    浙江省义乌市六校联考2024-2025学年数学九年级第一学期开学达标检测试题【含答案】第1页
    浙江省义乌市六校联考2024-2025学年数学九年级第一学期开学达标检测试题【含答案】第2页
    浙江省义乌市六校联考2024-2025学年数学九年级第一学期开学达标检测试题【含答案】第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省义乌市六校联考2024-2025学年数学九年级第一学期开学达标检测试题【含答案】

    展开

    这是一份浙江省义乌市六校联考2024-2025学年数学九年级第一学期开学达标检测试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,平分交于点,平分,,交于点,若,则( )
    A.75B.100C.120D.125
    2、(4分)如图, 在中,,,,为边上一个动点,于点,上于点,为的中点,则的最小值是( )
    A.B.
    C.D.
    3、(4分)一次函数y=﹣3x+5的图象不经过的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    4、(4分)如图,平行四边形ABCD中,AE平分∠BAD交边BC于点E,已知AD=7,CE=3,则AB的长是( )
    A.7B.3C.3.5D.4
    5、(4分)在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
    A.k>1B.k>0C.k≥1D.k<1
    6、(4分)如图,在中,,,,D为AB上的动点,连接CD,以AD、CD为边作平行四边形ADCE,则DE长的最小值为( )
    A.3B.4C.D.
    7、(4分)如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形( )
    A.4个B.5个C.8个D.9个
    8、(4分)调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是( )
    A.20B.30C.0.4D.0.6
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)计算+×的结果是_____.
    10、(4分)小明租用共享单车从家出发,匀速骑行到相距米的图书馆还书.小明出发的同时,他的爸爸以每分钟米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了分钟后沿原路按原速返回.设他们出发后经过(分)时,小明与家之间的距离为(米),小明爸爸与家之间的距离为(米),图中折线、线段分别表示、与之间的函数关系的图象.小明从家出发,经过___分钟在返回途中追上爸爸.
    11、(4分)如图,已知等边△ABC的边长为10,P是△ABC内一点,PD平行AC,PE平行AD,PF平行BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF= _______________.
    12、(4分)已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是 .
    13、(4分)一组数据:2,﹣1,0,x,1的平均数是0,则x=_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,正方形中,是对角线上一个动点,连结,过作,,
    ,分别为垂足.
    (1)求证:;
    (2)①写出、、三条线段满足的等量关系,并证明;②求当,时,的长
    15、(8分)如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).
    (1)求反比例函数的解析式;
    (2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;
    (3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.
    (4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.
    16、(8分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG、FC
    (1)请判断:FG与CE的数量关系是 ________,位置关系是________ 。
    (2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
    (3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断。
    17、(10分)为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)
    18、(10分)如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G;
    (1)求证:△ABE∽△EGB;
    (2)若AB=4,求CG的长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.
    20、(4分)如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为_____.
    21、(4分)如图,在正方形ABCD中,以A为顶点作等边三角形AEF,交BC边于点E,交DC边于点F,若△AEF的边长为2,则图中阴影部分的面积为_____.
    22、(4分)一个正多边形的每个内角度数均为135°,则它的边数为____.
    23、(4分)已知关于的方程有解,则的值为____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F,求证:四边形BEDF是平行四边形.
    25、(10分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.
    (1)求直线BC的解析式;
    (2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;
    26、(12分)如图,△ABC中,AB=AC.求作一点D,使得以A、B、C、D为顶点的四边形是菱形,并证明你作图的正确性.(要求:尺规作图,保留作图痕迹,不写作法)
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.
    【详解】
    ∵CE平分∠ACB,CF平分∠ACD,
    ∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
    又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
    ∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
    ∴CM=EM=MF=5,EF=10,
    由勾股定理可知CE1+CF1=EF1=2.
    故选:B
    本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.
    2、A
    【解析】
    根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
    【详解】
    ∵在△ABC中,AB=3,AC=4,BC=5,
    ∴AB2+AC2=BC2,
    即∠BAC=90°.
    又∵PE⊥AB于E,PF⊥AC于F,
    ∴四边形AEPF是矩形,
    ∴EF=AP.
    ∵M是EF的中点,
    ∴AM=EF=AP.
    因为AP的最小值即为直角三角形ABC斜边上的高,即等于 ,
    ∴AM的最小值是
    故选A.
    本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.
    3、C
    【解析】
    一次项系数-3<1,则图象经过二、四象限;常数项5>1,则图象还过第一象限.
    【详解】
    解:∵-3<1,∴图象经过二、四象限;
    又∵5>1,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.
    所以一次函数y=-3x+5的图象经过一、二、四象限,不经过第三象限.
    故选:C.
    一次函数的图象经过第几象限,取决于x的系数及常数是大于1或是小于1.可借助草图分析解答.
    4、D
    【解析】
    先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而由EC的长求出BE即可解答.
    【详解】
    解:∵AE平分∠BAD交BC边于点E,
    ∴∠BAE=∠EAD,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC=7,
    ∴∠DAE=∠AEB,
    ∴∠BAE=∠AEB,
    ∴AB=BE,
    ∵EC=3,
    ∴BE=BC-EC=7-3=4,
    ∴AB=4,
    故选D.
    本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.
    5、A
    【解析】
    根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
    【详解】
    解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
    即可得k﹣1>0,
    解得k>1.
    故选A.
    【点评】
    本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    6、D
    【解析】
    当DE⊥CE时,DE最小,过点C 作AB的垂线,交AB于点F.先证出是直角三角形,再用面积法求出CF的值,然后根据平行线间的距离处处相等得到DE的值。
    【详解】
    解:如图,当DE⊥CE时,DE最小,过点C 作AB的垂线,交AB于点F.
    ∵,,,
    ∴是直角三角形,面积=×3×4=6,
    ∴CF=
    ∵平行四边形ADCE,
    ∴CE∥AB,
    ∴DE=CF=
    故选:D
    本题考查了勾股定理的逆定理,垂线段最短的应用,熟练掌握定理和面积法求高是解题关键。
    7、D
    【解析】
    首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,CD∥AB,
    又∵EF∥BC,GH∥AB,
    ∴∴AB∥GH∥CD,AD∥EF∥BC,
    ∴平行四边形有:□ ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.
    故选D.
    本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.
    8、A
    【解析】
    根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数。一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.
    【详解】
    一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故答案为A.
    此题主要考查对频数定义的理解,熟练掌握即可得解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    原式===,
    故答案为.
    【点睛】本题考查了二次根式的混合运算,准确地对每一个二次根式进行化简,熟练运算法则是解题的关键.
    10、1.
    【解析】
    用路程除以时间就是小亮骑自行车的速度;设小亮从家出发,经过x分钟,在返回途中追上爸爸,再由题意得出等量关系除了小亮在图书馆停留2分钟,即x-2分钟所走的路程减去小亮从家到图书馆相距的2400米,就是小亮在返回途中追上爸爸时,爸爸所走的路程,列出方程即可解答出来
    【详解】
    解:小亮骑自行车的速度是2400÷10=240m/min;
    先设小亮从家出发,经过x分钟,在返回途中追上爸爸,由题意可得:
    (x-2)×240-2400=96x
    240x-240×2-2400=96x
    144x=2880
    x=1.
    答:小亮从家出发,经过1分钟,在返回途中追上爸爸.
    此题考查一次函数的实际运用,根据图象,找出题目蕴含的数量关系,根据速度、时间、路程之间关系解决问题.
    11、1
    【解析】
    延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,再根据平行四边形及等边三角形的性质得到PD=DH,PE=HC,PF=BD,故可求出PD+PE+PF的长.
    【详解】
    如图,延长EP、FP分别交AB、BC于G、H,
    由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,
    ∴PG=BD,PE=HC
    又∵△ABC是等边三角形,
    且PF∥AC,PD∥AB,可得△PFG,△PDH是等边三角形,
    ∴PF=PG=BD,PD=DH
    ∴PD+PE+PF=DH+GP+HC=DH+BD+HC=BC=1
    故答案为:1.
    此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及等边三角形的判定与性质.
    12、x<1
    【解析】
    利用函数图象,写出函数y1=k1x+b1的图象在函数y2=k2x+b2的图象下方所对应的自变量的范围即可.
    【详解】
    解:根据图象得,当x<1时,y1<y2,即k1x+b1<k2x+b2;
    故答案为:x<1
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    13、-2
    【解析】
    根据平均数的公式可得关于x的方程,解方程即可得.
    【详解】
    由题意得

    解得:x=-2,
    故答案为:-2.
    本题考查了平均数,熟练掌握平均数的计算公式是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)①GE2+GF2=AG2,证明见解析;②的长为或.
    【解析】
    (1)根据正方形的性质得出△DGE和△BGF是等腰直角三角形,可得GE=DG,GF=BG,结合AB=BD即可得出结论;
    (2)①连接CG,由SAS证明△ABG≌△CBG,得出AG=CG,证出四边形EGFC是矩形,得出CE=GF,由勾股定理即可得出GE2+GF2=AG2;
    ②设GE=CF=x,则GF=BF=6−x,由①中结论得出方程求出CF=1或CF=5,再分情况讨论,由勾股定理求出BG即可.
    【详解】
    解:(1)∵四边形ABCD为正方形,
    ∴∠BCD=90°,∠ABD=∠CDB=∠CBD=45°,AB=BC=CD,
    ∴△ABD是等腰直角三角形,
    ∴AB=BD,
    ∵GE⊥CD,GF⊥BC,
    ∴△DGE和△BGF是等腰直角三角形,
    ∴GE=DG,GF=BG,
    ∴GE+GF=(DG+BG)=BD,
    ∴GE+GF=AB;
    (2)①GE2+GF2=AG2,
    证明:连接CG,如图所示:
    在△ABG和△CBG中,,
    ∴△ABG≌△CBG(SAS),
    ∴AG=CG,
    ∵GE⊥CD,GF⊥BC,∠BCD=90°,
    ∴四边形EGFC是矩形,
    ∴CE=GF,
    ∵GE2+CE2=CG2,
    ∴GE2+GF2=AG2;
    ②设GE=CF=x,则GF=BF=6−x,
    ∵GE2+GF2=AG2,
    ∴,
    解得:x=1或x=5,
    当x=1时,则BF=GF=5,
    ∴BG=,
    当x=5时,则BF=GF=1,
    ∴BG=,
    综上,的长为或.
    本题是一道四边形综合题,考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,勾股定理及解一元二次方程等知识,通过作辅助线,构造出全等三角形是解题的关键.
    15、(1)y=;(2)点F的坐标为(2,4);(3)∠AOF=∠EOC,理由见解析;(4)P的坐标是(,0)或(-5,0)或(,0)或(5,0)
    【解析】
    (1)设反比例函数的解析式为y=,把点E(3,4)代入即可求出k的值,进而得出结论;
    (2)由正方形AOCB的边长为4,故可知点D的横坐标为4,点F的纵坐标为4,由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(4,3),由点D在直线上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标;
    (3)在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,由全等三角形的判定定理可知△OAF≌△OCG,△EGB≌△HGC(ASA),故可得出EG=HG,设直线EG的解析式为y=mx+n,把E(3,4),G(4,2)代入即可求出直线EG的解析式,故可得出H点的坐标,在Rt△AOF中,AO=4,AE=3,根据勾股定理得OE=5,可知OC=OE,即OG是等腰三角形底边EF上的中线,所以OG是等腰三角形顶角的平分线,由此即可得出结论;
    (4)分△PDQ的三个角分别是直角,三种情况进行讨论,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,即可构造全等的直角三角形,设出P的坐标,根据点在图象上,则一定满足函数的解析式即可求解,
    【详解】
    解:
    (1)设反比例函数的解析式y=,
    ∵反比例函数的图象过点E(3,4),
    ∴4=,即k=12,
    ∴反比例函数的解析式y=;
    (2)∵正方形AOCB的边长为4,
    ∴点D的横坐标为4,点F的纵坐标为4,
    ∵点D在反比例函数的图象上,
    ∴点D的纵坐标为3,即D(4,3),
    ∵点D在直线y=﹣x+b上,
    ∴3=﹣×4+b,
    解得:b=5,
    ∴直线DF为y=﹣x+5,
    将y=4代入y=﹣x+5,
    得4=﹣x+5,
    解得:x=2,
    ∴点F的坐标为(2,4),
    (3)∠AOF=∠EOC,理由为:
    证明:在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,

    ∴△OAF≌△OCG(SAS),
    ∴∠AOF=∠COG,

    ∴△EGB≌△HGC(ASA),
    ∴EG=HG,
    设直线EG:y=mx+n,
    ∵E(3,4),G(4,2),
    ∴,
    解得,
    ∴直线EG:y=﹣2x+10,
    令y=﹣2x+10=0,得x=5,
    ∴H(5,0),OH=5,
    在Rt△AOE中,AO=4,AE=3,根据勾股定理得OE=5,
    ∴OH=OE,
    ∴OG是等腰三角形底边EH上的中线,
    ∴OG是等腰三角形顶角的平分线,
    ∴∠EOG=∠GOH,
    ∴∠EOG=∠GOC=∠AOF,
    即∠AOF=∠EOC;
    (4)当Q在D的右侧(如图1),且∠PDQ=90°时,作DK⊥x轴,作QL⊥DK,于点L,
    则△DPK≌△QDK,
    设P的坐标是(a,0),则KP=DL=4-a,QL=DK=3,则Q的坐标是(4+3,4-3+a)即(7,-1+a),
    把(7,-1+a)代入y=得:
    7(-1+a)=12,
    解得:a=,
    则P的坐标是(,0);
    当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,
    则△QDL≌△PDK,
    则DK=DL=3,设P的坐标是b,则PK=QL=4-b,则QR=4-b+3=7-b,OR=OK-DL=4-3=1,
    则Q的坐标是(1,7-b),代入y=得:
    b=-5,
    则P的坐标是(-5,0);
    当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,
    则△QDL≌△PQK,则DK=DL=3,
    设Q的横坐标是c,则纵坐标是,
    则QK=QL=,
    又∵QL=c-4,
    ∴c-4=,
    解得:c=-2(舍去)或6,
    则PK=DL=DR-LR=DR-QK=3-=1,
    ∴OP=OK-PK=6-1=5,
    则P的坐标是(5,0);
    当Q在D的左侧(如图3),且∠DQP=90°时,不成立;
    当∠DPQ=90°时,(如图4),作DK⊥x轴,作QR⊥x轴,
    则△DPR≌△PQK,
    ∴DR=PK=3,RP=QK,
    设P的坐标是(d,0),
    则RK=QK=d-4,
    则OK=OP+PK=d+3,
    则Q的坐标是(d+3,d-4),代入y=得:
    (d+3)(d-4)=12,
    解得:d=或(舍去),
    则P的坐标是(,0),
    综上所述,P的坐标是(,0)或(-5,0)或(,0)或(5,0),
    本题是反比例函数综合题,掌握待定系数法求解析式,反比例函数的性质是解题的关键.
    16、(1)FG=CE,FG∥CE;(2)详见解析;(3)成立,理由详见解析.
    【解析】
    (1)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
    (2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
    (3)证明△CBF≌△DCE,即可证明四边形CEGF是平行四边形,即可得出结论.
    【详解】
    (1)FG=CE,FG∥CE;理由如下:
    过点G作GH⊥CB的延长线于点H,如图1所示:
    则GH∥BF,∠GHE=90°,
    ∵EG⊥DE,
    ∴∠GEH+∠DEC=90°,
    ∵∠GEH+∠HGE=90°,
    ∴∠DEC=∠HGE,
    在△HGE与△CED中,

    ∴△HGE≌△CED(AAS),
    ∴GH=CE,HE=CD,
    ∵CE=BF,
    ∴GH=BF,
    ∵GH∥BF,
    ∴四边形GHBF是矩形,
    ∴GF=BH,FG∥CH
    ∴FG∥CE,
    ∵四边形ABCD是正方形,
    ∴CD=BC,
    ∴HE=BC,
    ∴HE+EB=BC+EB,
    ∴BH=EC,
    ∴FG=EC;
    (2)FG=CE,FG∥CE仍然成立;理由如下:
    过点G作GH⊥CB的延长线于点H,如图2所示:
    ∵EG⊥DE,
    ∴∠GEH+∠DEC=90°,
    ∵∠GEH+∠HGE=90°,
    ∴∠DEC=∠HGE,
    在△HGE与△CED中,

    ∴△HGE≌△CED(AAS),
    ∴GH=CE,HE=CD,
    ∵CE=BF,∴GH=BF,
    ∵GH∥BF,
    ∴四边形GHBF是矩形,
    ∴GF=BH,FG∥CH
    ∴FG∥CE,
    ∵四边形ABCD是正方形,
    ∴CD=BC,
    ∴HE=BC,
    ∴HE+EB=BC+EB,
    ∴BH=EC,
    ∴FG=EC;
    (3)FG=CE,FG∥CE仍然成立.理由如下:
    ∵四边形ABCD是正方形,
    ∴BC=CD,∠FBC=∠ECD=90°,
    在△CBF与△DCE中,

    ∴△CBF≌△DCE(SAS),
    ∴∠BCF=∠CDE,CF=DE,
    ∵EG=DE,∴CF=EG,
    ∵DE⊥EG
    ∴∠DEC+∠CEG=90°
    ∵∠CDE+∠DEC=90°
    ∴∠CDE=∠CEG,
    ∴∠BCF=∠CEG,
    ∴CF∥EG,
    ∴四边形CEGF平行四边形,
    ∴FG∥CE,FG=CE.
    四边形综合题,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质等知识.本题综合性强,有一定难度,解题的关键是利用全等三角形的对应边相等进行线段的等量代换,从而求证出平行四边形.
    17、2.3m
    【解析】
    根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.
    【详解】
    在Rt△ABD中,∠BAD=18°,AB=9m,
    ∴BD=AB×tan18°≈2.92m,
    ∴CD=BD-BC=2.92-0.5=2.42m,
    在Rt△CDE中,∠CDE=72°,CD≈2.42m,
    ∴CE=CD×sin72°≈2.3m.
    答:CE的高为2.3m.
    本题考查了解直角三角形的应用,解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.
    18、 (1)证明见解析;(2)CG=6.
    【解析】
    (1)由正方形的性质与已知得出∠A=∠BEG,证出∠ABE=∠G,即可得出结论;
    (2)由AB=AD=4,E为AD的中点,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出结果.
    【详解】
    (1)证明:∵四边形ABCD为正方形,且∠BEG=90°,
    ∴∠A=∠BEG,
    ∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,
    ∴∠ABE=∠G,
    ∴△ABE∽△EGB;
    (2)∵AB=AD=4,E为AD的中点,
    ∴AE=DE=2,
    在Rt△ABE中,BE=,
    由(1)知,△ABE∽△EGB,
    ∴,即:,
    ∴BG=10,
    ∴CG=BG﹣BC=10﹣4=6.
    本题主要考查了四边形与相似三角形的综合运用,熟练掌握二者相关概念是解题关键
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC⊥BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.
    【详解】
    如图,连接BD交AC于E.
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,AE=EC,
    ∵OA=2OC,AC=3,
    ∴CO=DO=2EO=1,AE=,
    ∴EO=,DE=EB=,
    ∴AD=.
    故答案为.
    本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.
    20、(a+3,b+2)
    【解析】
    找到一对对应点的平移规律,让点P的坐标也作相应变化即可.
    【详解】
    点B的坐标为(-2,0),点B′的坐标为(1,2);
    横坐标增加了1-(-2)=3;纵坐标增加了2-0=2;
    ∵△ABC上点P的坐标为(a,b),
    ∴点P的横坐标为a+3,纵坐标为b+2,
    ∴点P变换后的对应点P′的坐标为(a+3,b+2).
    解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
    21、1
    【解析】
    先根据直角边和斜边相等,证出△ABE≌△ADF,从而得CE=CF,继而在△ECF利用勾股定理求出CE、CF长,再利用三角形的面积公式进行求解即可.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=BC=CD=AD,∠B=∠C=∠D=90°,
    ∵△AEF是等边三角形,
    ∴AE=EF=AF=2,
    ∴Rt△ABE≌Rt△ADF(HL),
    ∴BE=DF,
    ∴EC=CF,
    又∵∠C=90°,
    ∴CE2+CF2=EF2=22,
    ∴CE=CF=,
    ∴S△ECF==1,
    故答案为:1.
    本题考查了正方形的性质,等边三角形性质,勾股定理,三角形的面积等知识,熟练掌握和灵活运用相关知识是解题的关键.
    22、8
    【解析】
    试题分析:多边形的每一个内角的度数=,根据公式就可以求出边数.
    【详解】
    设该正多边形的边数为n
    由题意得:=135°
    解得:n=8
    故答案为8.
    考点:多边形的内角和
    23、1
    【解析】
    分式方程去分母转化为整式方程,把x=2代入整式方程计算即可求出a的值.
    【详解】
    去分母得:a﹣x=ax﹣3,把x=2代入得:a﹣2=2a﹣3,解得:a=1.
    故答案为:1.
    本题考查了分式方程的解,始终注意分母不为0这个条件.
    二、解答题(本大题共3个小题,共30分)
    24、见解析
    【解析】
    根据平行四边形的性质得出∠ABC=∠ADC,AD∥BC,求出DE∥BF,∠EBC=∠AEB,根据角平分线的定义求出∠ADF=∠EBC,求出∠AEB=∠ADF,根据平行线的判定得出BE∥DF,根据平行四边形的判定得出即可.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴∠ABC=∠ADC,AD∥BC,
    ∴DE∥BF,∠EBC=∠AEB,
    ∵∠ABC、∠ADC的平分线分别交AD、BC于点E、F,
    ∴∠ADF=ADC,∠EBC=ABC,
    ∴∠ADF=∠EBC,
    ∴∠AEB=∠ADF,
    ∴BE∥DF,
    ∵DE∥BF,
    ∴四边形BEDF是平行四边形.
    本题考查了平行四边形的性质和判定,平行线的性质,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.
    25、 (1) BC的解析式是y=−x+3;(2)当02时,S=3t−6.
    【解析】
    (1)令y=0,即可求得A的坐标,根据OC=3OA即可求得C的坐标,再根据∠CBA=45°,即△BOC的等腰直角三角形,则B的坐标即可求得,然后利用待定系数法求得BC的解析式;
    (2)分成P在AB和在AB的延长线上两种情况进行讨论,利用三角形面积公式即可求解.
    【详解】
    (1)在y=kx+k中,令y=0,则x=−1,即A的坐标是(−1,0).
    ∵OC=3OA,
    ∴OC=3,即C的坐标是(0,3).
    ∵∠CBA=45∘,
    ∴∠OCB=∠CBA=45∘,
    ∴OB=OC=3,则B的坐标是(3,0).
    设BC的解析式是y=kx+b,则,
    解得:,
    则BC的解析式是y=−x+3;
    (2)当02时,OP=2t−4,则S=×3(2t−4),即S=3t−6.
    本题考查一次函数综合,解题的关键是掌握待定系数法求解析式.
    26、见解析
    【解析】
    分别以B,C为圆心,以AB长画弧,两弧相交一点,即为D点.
    【详解】
    如图即为所求作的菱形
    理由如下:
    ∵AB=AC,BD=AB,CD=AC,
    ∴AB=BD=CD=AC,
    ∴四边形ABDC是菱形.
    本题考查尺规作图和菱形的性质,解题的关键是掌握尺规作图和菱形的性质.
    题号





    总分
    得分

    相关试卷

    浙江省义乌市七校联考2024-2025学年九上数学开学综合测试模拟试题【含答案】:

    这是一份浙江省义乌市七校联考2024-2025学年九上数学开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省义乌市2024年数学九上开学达标检测模拟试题【含答案】:

    这是一份浙江省义乌市2024年数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省金华市义乌市七校联考2025届九上数学开学达标检测试题【含答案】:

    这是一份浙江省金华市义乌市七校联考2025届九上数学开学达标检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map