浙江省义乌市六校联考2024-2025学年数学九年级第一学期开学达标检测试题【含答案】
展开
这是一份浙江省义乌市六校联考2024-2025学年数学九年级第一学期开学达标检测试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,平分交于点,平分,,交于点,若,则( )
A.75B.100C.120D.125
2、(4分)如图, 在中,,,,为边上一个动点,于点,上于点,为的中点,则的最小值是( )
A.B.
C.D.
3、(4分)一次函数y=﹣3x+5的图象不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)如图,平行四边形ABCD中,AE平分∠BAD交边BC于点E,已知AD=7,CE=3,则AB的长是( )
A.7B.3C.3.5D.4
5、(4分)在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
A.k>1B.k>0C.k≥1D.k<1
6、(4分)如图,在中,,,,D为AB上的动点,连接CD,以AD、CD为边作平行四边形ADCE,则DE长的最小值为( )
A.3B.4C.D.
7、(4分)如图,平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中有平行四边形( )
A.4个B.5个C.8个D.9个
8、(4分)调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是( )
A.20B.30C.0.4D.0.6
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算+×的结果是_____.
10、(4分)小明租用共享单车从家出发,匀速骑行到相距米的图书馆还书.小明出发的同时,他的爸爸以每分钟米的速度从图书馆沿同一条道路步行回家,小明在图书馆停留了分钟后沿原路按原速返回.设他们出发后经过(分)时,小明与家之间的距离为(米),小明爸爸与家之间的距离为(米),图中折线、线段分别表示、与之间的函数关系的图象.小明从家出发,经过___分钟在返回途中追上爸爸.
11、(4分)如图,已知等边△ABC的边长为10,P是△ABC内一点,PD平行AC,PE平行AD,PF平行BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF= _______________.
12、(4分)已知函数y1=k1x+b1与函数y2=k2x+b2的图象如图所示,则不等式k1x+b1<k2x+b2的解集是 .
13、(4分)一组数据:2,﹣1,0,x,1的平均数是0,则x=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形中,是对角线上一个动点,连结,过作,,
,分别为垂足.
(1)求证:;
(2)①写出、、三条线段满足的等量关系,并证明;②求当,时,的长
15、(8分)如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).
(1)求反比例函数的解析式;
(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;
(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.
(4)若点P是x轴上的动点,点Q是(1)中的反比例函数在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,请求出点P的坐标.
16、(8分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG、FC
(1)请判断:FG与CE的数量关系是 ________,位置关系是________ 。
(2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断。
17、(10分)为缓解“停车难”问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入.(其中AB=9m,BC=0.5m)为标明限高,请你根据该图计算CE.(精确到0.1m)(参考数值,,)
18、(10分)如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G;
(1)求证:△ABE∽△EGB;
(2)若AB=4,求CG的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.
20、(4分)如图,把△ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(a,b),那么点P变换后的对应点P′的坐标为_____.
21、(4分)如图,在正方形ABCD中,以A为顶点作等边三角形AEF,交BC边于点E,交DC边于点F,若△AEF的边长为2,则图中阴影部分的面积为_____.
22、(4分)一个正多边形的每个内角度数均为135°,则它的边数为____.
23、(4分)已知关于的方程有解,则的值为____________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F,求证:四边形BEDF是平行四边形.
25、(10分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.
(1)求直线BC的解析式;
(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;
26、(12分)如图,△ABC中,AB=AC.求作一点D,使得以A、B、C、D为顶点的四边形是菱形,并证明你作图的正确性.(要求:尺规作图,保留作图痕迹,不写作法)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.
【详解】
∵CE平分∠ACB,CF平分∠ACD,
∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE1+CF1=EF1=2.
故选:B
本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.
2、A
【解析】
根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.
【详解】
∵在△ABC中,AB=3,AC=4,BC=5,
∴AB2+AC2=BC2,
即∠BAC=90°.
又∵PE⊥AB于E,PF⊥AC于F,
∴四边形AEPF是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=EF=AP.
因为AP的最小值即为直角三角形ABC斜边上的高,即等于 ,
∴AM的最小值是
故选A.
本题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.
3、C
【解析】
一次项系数-3<1,则图象经过二、四象限;常数项5>1,则图象还过第一象限.
【详解】
解:∵-3<1,∴图象经过二、四象限;
又∵5>1,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.
所以一次函数y=-3x+5的图象经过一、二、四象限,不经过第三象限.
故选:C.
一次函数的图象经过第几象限,取决于x的系数及常数是大于1或是小于1.可借助草图分析解答.
4、D
【解析】
先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而由EC的长求出BE即可解答.
【详解】
解:∵AE平分∠BAD交BC边于点E,
∴∠BAE=∠EAD,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=7,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∵EC=3,
∴BE=BC-EC=7-3=4,
∴AB=4,
故选D.
本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.
5、A
【解析】
根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
【详解】
解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
即可得k﹣1>0,
解得k>1.
故选A.
【点评】
本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
6、D
【解析】
当DE⊥CE时,DE最小,过点C 作AB的垂线,交AB于点F.先证出是直角三角形,再用面积法求出CF的值,然后根据平行线间的距离处处相等得到DE的值。
【详解】
解:如图,当DE⊥CE时,DE最小,过点C 作AB的垂线,交AB于点F.
∵,,,
∴是直角三角形,面积=×3×4=6,
∴CF=
∵平行四边形ADCE,
∴CE∥AB,
∴DE=CF=
故选:D
本题考查了勾股定理的逆定理,垂线段最短的应用,熟练掌握定理和面积法求高是解题关键。
7、D
【解析】
首先根据已知条件找出图中的平行线段,然后根据两组对边分别平行的四边形是平行四边形,来判断图中平行四边形的个数.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,CD∥AB,
又∵EF∥BC,GH∥AB,
∴∴AB∥GH∥CD,AD∥EF∥BC,
∴平行四边形有:□ ABCD,□ABHG,□CDGH,□BCFE,□ADFE,□AGOE,□BEOH,□OFCH,□OGDF,共9个.即共有9个平行四边形.
故选D.
本题考查平行四边形的判定与性质,解题的关键是根据已知条件找出图中的平行线段.
8、A
【解析】
根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数。一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.
【详解】
一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故答案为A.
此题主要考查对频数定义的理解,熟练掌握即可得解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
原式===,
故答案为.
【点睛】本题考查了二次根式的混合运算,准确地对每一个二次根式进行化简,熟练运算法则是解题的关键.
10、1.
【解析】
用路程除以时间就是小亮骑自行车的速度;设小亮从家出发,经过x分钟,在返回途中追上爸爸,再由题意得出等量关系除了小亮在图书馆停留2分钟,即x-2分钟所走的路程减去小亮从家到图书馆相距的2400米,就是小亮在返回途中追上爸爸时,爸爸所走的路程,列出方程即可解答出来
【详解】
解:小亮骑自行车的速度是2400÷10=240m/min;
先设小亮从家出发,经过x分钟,在返回途中追上爸爸,由题意可得:
(x-2)×240-2400=96x
240x-240×2-2400=96x
144x=2880
x=1.
答:小亮从家出发,经过1分钟,在返回途中追上爸爸.
此题考查一次函数的实际运用,根据图象,找出题目蕴含的数量关系,根据速度、时间、路程之间关系解决问题.
11、1
【解析】
延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,再根据平行四边形及等边三角形的性质得到PD=DH,PE=HC,PF=BD,故可求出PD+PE+PF的长.
【详解】
如图,延长EP、FP分别交AB、BC于G、H,
由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,
∴PG=BD,PE=HC
又∵△ABC是等边三角形,
且PF∥AC,PD∥AB,可得△PFG,△PDH是等边三角形,
∴PF=PG=BD,PD=DH
∴PD+PE+PF=DH+GP+HC=DH+BD+HC=BC=1
故答案为:1.
此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及等边三角形的判定与性质.
12、x<1
【解析】
利用函数图象,写出函数y1=k1x+b1的图象在函数y2=k2x+b2的图象下方所对应的自变量的范围即可.
【详解】
解:根据图象得,当x<1时,y1<y2,即k1x+b1<k2x+b2;
故答案为:x<1
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
13、-2
【解析】
根据平均数的公式可得关于x的方程,解方程即可得.
【详解】
由题意得
,
解得:x=-2,
故答案为:-2.
本题考查了平均数,熟练掌握平均数的计算公式是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)①GE2+GF2=AG2,证明见解析;②的长为或.
【解析】
(1)根据正方形的性质得出△DGE和△BGF是等腰直角三角形,可得GE=DG,GF=BG,结合AB=BD即可得出结论;
(2)①连接CG,由SAS证明△ABG≌△CBG,得出AG=CG,证出四边形EGFC是矩形,得出CE=GF,由勾股定理即可得出GE2+GF2=AG2;
②设GE=CF=x,则GF=BF=6−x,由①中结论得出方程求出CF=1或CF=5,再分情况讨论,由勾股定理求出BG即可.
【详解】
解:(1)∵四边形ABCD为正方形,
∴∠BCD=90°,∠ABD=∠CDB=∠CBD=45°,AB=BC=CD,
∴△ABD是等腰直角三角形,
∴AB=BD,
∵GE⊥CD,GF⊥BC,
∴△DGE和△BGF是等腰直角三角形,
∴GE=DG,GF=BG,
∴GE+GF=(DG+BG)=BD,
∴GE+GF=AB;
(2)①GE2+GF2=AG2,
证明:连接CG,如图所示:
在△ABG和△CBG中,,
∴△ABG≌△CBG(SAS),
∴AG=CG,
∵GE⊥CD,GF⊥BC,∠BCD=90°,
∴四边形EGFC是矩形,
∴CE=GF,
∵GE2+CE2=CG2,
∴GE2+GF2=AG2;
②设GE=CF=x,则GF=BF=6−x,
∵GE2+GF2=AG2,
∴,
解得:x=1或x=5,
当x=1时,则BF=GF=5,
∴BG=,
当x=5时,则BF=GF=1,
∴BG=,
综上,的长为或.
本题是一道四边形综合题,考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,勾股定理及解一元二次方程等知识,通过作辅助线,构造出全等三角形是解题的关键.
15、(1)y=;(2)点F的坐标为(2,4);(3)∠AOF=∠EOC,理由见解析;(4)P的坐标是(,0)或(-5,0)或(,0)或(5,0)
【解析】
(1)设反比例函数的解析式为y=,把点E(3,4)代入即可求出k的值,进而得出结论;
(2)由正方形AOCB的边长为4,故可知点D的横坐标为4,点F的纵坐标为4,由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(4,3),由点D在直线上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标;
(3)在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,由全等三角形的判定定理可知△OAF≌△OCG,△EGB≌△HGC(ASA),故可得出EG=HG,设直线EG的解析式为y=mx+n,把E(3,4),G(4,2)代入即可求出直线EG的解析式,故可得出H点的坐标,在Rt△AOF中,AO=4,AE=3,根据勾股定理得OE=5,可知OC=OE,即OG是等腰三角形底边EF上的中线,所以OG是等腰三角形顶角的平分线,由此即可得出结论;
(4)分△PDQ的三个角分别是直角,三种情况进行讨论,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,即可构造全等的直角三角形,设出P的坐标,根据点在图象上,则一定满足函数的解析式即可求解,
【详解】
解:
(1)设反比例函数的解析式y=,
∵反比例函数的图象过点E(3,4),
∴4=,即k=12,
∴反比例函数的解析式y=;
(2)∵正方形AOCB的边长为4,
∴点D的横坐标为4,点F的纵坐标为4,
∵点D在反比例函数的图象上,
∴点D的纵坐标为3,即D(4,3),
∵点D在直线y=﹣x+b上,
∴3=﹣×4+b,
解得:b=5,
∴直线DF为y=﹣x+5,
将y=4代入y=﹣x+5,
得4=﹣x+5,
解得:x=2,
∴点F的坐标为(2,4),
(3)∠AOF=∠EOC,理由为:
证明:在CD上取CG=AF=2,连接OG,连接EG并延长交x轴于点H,
,
∴△OAF≌△OCG(SAS),
∴∠AOF=∠COG,
,
∴△EGB≌△HGC(ASA),
∴EG=HG,
设直线EG:y=mx+n,
∵E(3,4),G(4,2),
∴,
解得,
∴直线EG:y=﹣2x+10,
令y=﹣2x+10=0,得x=5,
∴H(5,0),OH=5,
在Rt△AOE中,AO=4,AE=3,根据勾股定理得OE=5,
∴OH=OE,
∴OG是等腰三角形底边EH上的中线,
∴OG是等腰三角形顶角的平分线,
∴∠EOG=∠GOH,
∴∠EOG=∠GOC=∠AOF,
即∠AOF=∠EOC;
(4)当Q在D的右侧(如图1),且∠PDQ=90°时,作DK⊥x轴,作QL⊥DK,于点L,
则△DPK≌△QDK,
设P的坐标是(a,0),则KP=DL=4-a,QL=DK=3,则Q的坐标是(4+3,4-3+a)即(7,-1+a),
把(7,-1+a)代入y=得:
7(-1+a)=12,
解得:a=,
则P的坐标是(,0);
当Q在D的左侧(如图2),且∠PDQ=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,
则△QDL≌△PDK,
则DK=DL=3,设P的坐标是b,则PK=QL=4-b,则QR=4-b+3=7-b,OR=OK-DL=4-3=1,
则Q的坐标是(1,7-b),代入y=得:
b=-5,
则P的坐标是(-5,0);
当Q在D的右侧(如图3),且∠DQP=90°时,作DK⊥x轴,作QR⊥x轴,作DL⊥QR,于点L,
则△QDL≌△PQK,则DK=DL=3,
设Q的横坐标是c,则纵坐标是,
则QK=QL=,
又∵QL=c-4,
∴c-4=,
解得:c=-2(舍去)或6,
则PK=DL=DR-LR=DR-QK=3-=1,
∴OP=OK-PK=6-1=5,
则P的坐标是(5,0);
当Q在D的左侧(如图3),且∠DQP=90°时,不成立;
当∠DPQ=90°时,(如图4),作DK⊥x轴,作QR⊥x轴,
则△DPR≌△PQK,
∴DR=PK=3,RP=QK,
设P的坐标是(d,0),
则RK=QK=d-4,
则OK=OP+PK=d+3,
则Q的坐标是(d+3,d-4),代入y=得:
(d+3)(d-4)=12,
解得:d=或(舍去),
则P的坐标是(,0),
综上所述,P的坐标是(,0)或(-5,0)或(,0)或(5,0),
本题是反比例函数综合题,掌握待定系数法求解析式,反比例函数的性质是解题的关键.
16、(1)FG=CE,FG∥CE;(2)详见解析;(3)成立,理由详见解析.
【解析】
(1)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;
(3)证明△CBF≌△DCE,即可证明四边形CEGF是平行四边形,即可得出结论.
【详解】
(1)FG=CE,FG∥CE;理由如下:
过点G作GH⊥CB的延长线于点H,如图1所示:
则GH∥BF,∠GHE=90°,
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,
,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,
∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE,
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;
(2)FG=CE,FG∥CE仍然成立;理由如下:
过点G作GH⊥CB的延长线于点H,如图2所示:
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE与△CED中,
,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,∴GH=BF,
∵GH∥BF,
∴四边形GHBF是矩形,
∴GF=BH,FG∥CH
∴FG∥CE,
∵四边形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;
(3)FG=CE,FG∥CE仍然成立.理由如下:
∵四边形ABCD是正方形,
∴BC=CD,∠FBC=∠ECD=90°,
在△CBF与△DCE中,
,
∴△CBF≌△DCE(SAS),
∴∠BCF=∠CDE,CF=DE,
∵EG=DE,∴CF=EG,
∵DE⊥EG
∴∠DEC+∠CEG=90°
∵∠CDE+∠DEC=90°
∴∠CDE=∠CEG,
∴∠BCF=∠CEG,
∴CF∥EG,
∴四边形CEGF平行四边形,
∴FG∥CE,FG=CE.
四边形综合题,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质等知识.本题综合性强,有一定难度,解题的关键是利用全等三角形的对应边相等进行线段的等量代换,从而求证出平行四边形.
17、2.3m
【解析】
根据锐角三角函数的定义,可在Rt△ACD中解得BD的值,进而求得CD的大小;在Rt△CDE中,利用正弦的定义,即可求得CE的值.
【详解】
在Rt△ABD中,∠BAD=18°,AB=9m,
∴BD=AB×tan18°≈2.92m,
∴CD=BD-BC=2.92-0.5=2.42m,
在Rt△CDE中,∠CDE=72°,CD≈2.42m,
∴CE=CD×sin72°≈2.3m.
答:CE的高为2.3m.
本题考查了解直角三角形的应用,解直角三角形的应用是中考必考题,一般难度不大,正确作出辅助线构造直角三角形是解题关键.
18、 (1)证明见解析;(2)CG=6.
【解析】
(1)由正方形的性质与已知得出∠A=∠BEG,证出∠ABE=∠G,即可得出结论;
(2)由AB=AD=4,E为AD的中点,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出结果.
【详解】
(1)证明:∵四边形ABCD为正方形,且∠BEG=90°,
∴∠A=∠BEG,
∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,
∴∠ABE=∠G,
∴△ABE∽△EGB;
(2)∵AB=AD=4,E为AD的中点,
∴AE=DE=2,
在Rt△ABE中,BE=,
由(1)知,△ABE∽△EGB,
∴,即:,
∴BG=10,
∴CG=BG﹣BC=10﹣4=6.
本题主要考查了四边形与相似三角形的综合运用,熟练掌握二者相关概念是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC⊥BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.
【详解】
如图,连接BD交AC于E.
∵四边形ABCD是菱形,
∴AC⊥BD,AE=EC,
∵OA=2OC,AC=3,
∴CO=DO=2EO=1,AE=,
∴EO=,DE=EB=,
∴AD=.
故答案为.
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.
20、(a+3,b+2)
【解析】
找到一对对应点的平移规律,让点P的坐标也作相应变化即可.
【详解】
点B的坐标为(-2,0),点B′的坐标为(1,2);
横坐标增加了1-(-2)=3;纵坐标增加了2-0=2;
∵△ABC上点P的坐标为(a,b),
∴点P的横坐标为a+3,纵坐标为b+2,
∴点P变换后的对应点P′的坐标为(a+3,b+2).
解决本题的关键是根据已知对应点找到各对应点之间的变化规律.
21、1
【解析】
先根据直角边和斜边相等,证出△ABE≌△ADF,从而得CE=CF,继而在△ECF利用勾股定理求出CE、CF长,再利用三角形的面积公式进行求解即可.
【详解】
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠C=∠D=90°,
∵△AEF是等边三角形,
∴AE=EF=AF=2,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∴EC=CF,
又∵∠C=90°,
∴CE2+CF2=EF2=22,
∴CE=CF=,
∴S△ECF==1,
故答案为:1.
本题考查了正方形的性质,等边三角形性质,勾股定理,三角形的面积等知识,熟练掌握和灵活运用相关知识是解题的关键.
22、8
【解析】
试题分析:多边形的每一个内角的度数=,根据公式就可以求出边数.
【详解】
设该正多边形的边数为n
由题意得:=135°
解得:n=8
故答案为8.
考点:多边形的内角和
23、1
【解析】
分式方程去分母转化为整式方程,把x=2代入整式方程计算即可求出a的值.
【详解】
去分母得:a﹣x=ax﹣3,把x=2代入得:a﹣2=2a﹣3,解得:a=1.
故答案为:1.
本题考查了分式方程的解,始终注意分母不为0这个条件.
二、解答题(本大题共3个小题,共30分)
24、见解析
【解析】
根据平行四边形的性质得出∠ABC=∠ADC,AD∥BC,求出DE∥BF,∠EBC=∠AEB,根据角平分线的定义求出∠ADF=∠EBC,求出∠AEB=∠ADF,根据平行线的判定得出BE∥DF,根据平行四边形的判定得出即可.
【详解】
∵四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD∥BC,
∴DE∥BF,∠EBC=∠AEB,
∵∠ABC、∠ADC的平分线分别交AD、BC于点E、F,
∴∠ADF=ADC,∠EBC=ABC,
∴∠ADF=∠EBC,
∴∠AEB=∠ADF,
∴BE∥DF,
∵DE∥BF,
∴四边形BEDF是平行四边形.
本题考查了平行四边形的性质和判定,平行线的性质,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.
25、 (1) BC的解析式是y=−x+3;(2)当02时,S=3t−6.
【解析】
(1)令y=0,即可求得A的坐标,根据OC=3OA即可求得C的坐标,再根据∠CBA=45°,即△BOC的等腰直角三角形,则B的坐标即可求得,然后利用待定系数法求得BC的解析式;
(2)分成P在AB和在AB的延长线上两种情况进行讨论,利用三角形面积公式即可求解.
【详解】
(1)在y=kx+k中,令y=0,则x=−1,即A的坐标是(−1,0).
∵OC=3OA,
∴OC=3,即C的坐标是(0,3).
∵∠CBA=45∘,
∴∠OCB=∠CBA=45∘,
∴OB=OC=3,则B的坐标是(3,0).
设BC的解析式是y=kx+b,则,
解得:,
则BC的解析式是y=−x+3;
(2)当02时,OP=2t−4,则S=×3(2t−4),即S=3t−6.
本题考查一次函数综合,解题的关键是掌握待定系数法求解析式.
26、见解析
【解析】
分别以B,C为圆心,以AB长画弧,两弧相交一点,即为D点.
【详解】
如图即为所求作的菱形
理由如下:
∵AB=AC,BD=AB,CD=AC,
∴AB=BD=CD=AC,
∴四边形ABDC是菱形.
本题考查尺规作图和菱形的性质,解题的关键是掌握尺规作图和菱形的性质.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份浙江省义乌市七校联考2024-2025学年九上数学开学综合测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省义乌市2024年数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份浙江省金华市义乌市七校联考2025届九上数学开学达标检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。