终身会员
搜索
    上传资料 赚现金
    郑州二中学2024年数学九上开学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    郑州二中学2024年数学九上开学质量检测模拟试题【含答案】01
    郑州二中学2024年数学九上开学质量检测模拟试题【含答案】02
    郑州二中学2024年数学九上开学质量检测模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    郑州二中学2024年数学九上开学质量检测模拟试题【含答案】

    展开
    这是一份郑州二中学2024年数学九上开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知甲,乙两组数据的折线图如图所示,设甲,乙两组数据的方差分别为,,则与大小关系为( )
    A.B.
    C.D.不能确定
    2、(4分)如图,这组数据的组数与组距分别为( )
    A.5,9B.6,9
    C.5,10D.6,10
    3、(4分)如图,四边形中,,,,点,分别为线段,上的动点(含端点,但点不与点重合),点,分别为,的中点,则长度的最大值为( )
    A.8B.6C.4D.5
    4、(4分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以正方形的对角线OA1为边作正方形OA1A2B1,再以正方形的对角线OA2为边作正方形OA1A2B1,…,依此规律,则点A2017的坐标是( )
    A.(21008,0)B.(21008,﹣21008)C.(0,21010)D.(22019,﹣22019)
    5、(4分)如图,长方形的高为,底面长为 ,宽为,蚂蚁沿长方体表面,从点到(点 见图中黑圆点)的最短距离是( )
    A.B.C.D.
    6、(4分)图中两直线L1,L2的交点坐标可以看作方程组( )的解.
    A.B.C.D.
    7、(4分)下列结论中,矩形具有而菱形不一定具有的性质是( )
    A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直
    8、(4分)下图表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn0)的大致图像是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)我们知道:当时,不论取何实数,函数的值为3,所以直线一定经过定点;同样,直线一定经过的定点为______.
    10、(4分)计算的结果为______.
    11、(4分)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为______.
    12、(4分) 的计算结果是___________.
    13、(4分)如图,,,,,的长为________;
    三、解答题(本大题共5个小题,共48分)
    14、(12分)小东根据学习一次函数的经验,对函数y=|2x﹣1|的图象和性质进行了探究.下面是小东的探究过程,请补充完成:
    (1)函数y=|2x﹣1|的自变量x的取值范围是 ;
    (2)已知:
    ①当x=时,y=|2x﹣1|=0;
    ②当x>时,y=|2x﹣1|=2x﹣1
    ③当x<时,y=|2x﹣1|=1﹣2x;
    显然,②和③均为某个一次函数的一部分.
    (3)由(2)的分析,取5个点可画出此函数的图象,请你帮小东确定下表中第5个点的坐标(m,n),其中m= ;n= ;:
    (4)在平面直角坐标系xOy中,作出函数y=|2x﹣1|的图象;
    (5)根据函数的图象,写出函数y=|2x﹣1|的一条性质.
    15、(8分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.
    ①求证:PG=PF;
    ②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.
    (2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
    16、(8分)数学综合实验课上,同学们在测量学校旗杆的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开8米后,下端刚好接触地面,如图,根据以上数据,同学们准确求出了旗杆的高度,你知道他们是如何计算出来的吗?
    17、(10分)(1)已知点A(2,0)在函数y=kx+3的图象上,求该函数的表达式并画出图形;
    (2)求该函数图象与坐标轴围成的三角形的面积.
    18、(10分)三五三七鞋厂为了了解初中学生穿鞋的鞋号情况,对红华中学初二(1)班的20名男生所穿鞋号统计如下表:
    (1)写出男生鞋号数据的平均数,中位数,众数;
    (2)在平均数,中位数和众数中,鞋厂最感兴趣的是什么?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.
    20、(4分)农科院对甲、乙两种甜玉米各10块试验田进行试验后,得到甲、乙两个品种每公顷的平均产量相同,而甲、乙两个品种产量的方差分别为,,则产量较为稳定的品种是_____________(填“甲”或“乙”).
    21、(4分)已知是实数,且和都是整数,那么的值是________.
    22、(4分)为了解某篮球队队员身高,经调查结果如下:3人,2人,2人,3人,则该篮球队队员平均身高是__________.
    23、(4分)因式分解:________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)计算:
    (1);
    (2)(﹣)(+)+(﹣1)2
    25、(10分)如图,一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.4m,则梯子底端B也外移0.4m吗?为什么?
    26、(12分)如图,将--张矩形纸片沿着对角线向上折叠,顶点落到点处,交于点作交于点连接交于点.
    (1)判断四边形的形状,并说明理由,
    (2)若,求的长,
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    通过折线统计图中得出甲、乙两个组的各个数据,进而求出甲、乙的平均数,甲、乙的方差,进而做比较得出答案.
    【详解】
    甲的平均数:(3+6+2+6+4+3)÷6=4,乙的平均数:(4+3+5+3+4+5)÷6=4,[(3﹣4)2+(6﹣4)2+(2﹣4)2+(6﹣4)2+(4﹣4)2+(3﹣4)2]≈2.33,[(4﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2]≈0.1.
    ∵2.33>0.1,∴.
    故选A.
    本题考查了折线统计图、平均数、方差的计算方法和各个统计量的所反映数据的特征,掌握平均数、方差的计算公式是正确解答的前提.
    2、D
    【解析】
    通过观察频率分布直方图,发现一共分为6组,每一组的最大值和最小值的差都是10,做出判断.
    【详解】
    解:频率分布直方图中共有6个直条,故组数是6,每组的最大值和最小值的差都是10,因此组距是10,
    故选:D.
    考查频率分布直方图的制作方法,明确组距、组数的意义是绘制频率分布直方图的两个基本的步骤.
    3、D
    【解析】
    根据三角形中位线定理可知,求出的最大值即可.
    【详解】
    如图,连结,
    ,,

    当点与点重合时,的值最大即最大,
    在中,,,,

    的最大值.
    故选:.
    本题考查三角形中位线定理、勾股定理等知识,解题的关键是中位线定理的灵活应用,学会转化的思想,属于中考常考题型.
    4、B
    【解析】
    根据正方形的性质可找出部分点An的坐标,根据坐标的变化即可找出A (2 ,2 )(n为自然数),再根据2017=252×8+1,即可找出点A2019的坐标.
    【详解】
    观察发现:
    A(0,1)、A(1,1),A(2,0),A(2,−2),A (0,−4),A (−4,−4),A (−8,0),A (−8,8),A (0,16),A (16,16)…,
    ∴A (2 ,2 )(n为自然数).
    ∵2017=252×8+1,
    ∴A2017的坐标是(21008,﹣21008).
    故选B.
    此题考查规律型:点的坐标,解题关键在于找到规律
    5、D
    【解析】
    分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
    详解:根据题意可能的最短路线有6条,重复的不算,可以通过三条来计算比较.(见图示)
    根据他们相应的展开图分别计算比较:
    图①:;
    图②:;
    图③:.
    ∵.
    故应选D.
    点睛:考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.
    6、B
    【解析】
    分析:
    根据图中信息分别求出直线l1和l2的解析式即可作出判断.
    详解:
    设直线l1和l2的解析式分别为,根据图中信息可得:
    , ,
    解得: ,,
    ∴l1和l2的解析式分别为,即,,
    ∴直线l1和l2的交点坐标可以看作方程 的交点坐标.
    故选B.
    点睛:根据图象中的信息由待定系数法求得直线l1和l2的解析式是解答本题的关键.
    7、C
    【解析】
    矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.
    【详解】
    A、菱形、矩形的内角和都为360°,故本选项错误;
    B、对角互相平分,菱形、矩形都具有,故本选项错误;
    C、对角线相等菱形不具有,而矩形具有,故本选项正确
    D、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,
    故选C.
    本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.
    8、C
    【解析】
    根据一次函数图像与系数的关系以及正比例函数图像与系数的关系逐一对各选项进行判断,然后进一步得出答案即可.
    【详解】
    A:由一次函数图像可知:m>0,n>0,则mn>0,由正比例函数图像可得:mn<0,互相矛盾,故该选项错误;
    B:由一次函数图像可知:m>0,n<0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;
    C:由一次函数图像可知:m﹤0,n>0,则此时mn﹤0,由正比例函数图像可得:mn<0,故该选项正确;
    D:由一次函数图像可知:m﹤0,n﹥0,则此时mn<0,由正比例函数图像可得:mn>0,互相矛盾,故该选项错误;
    故选:C.
    本题主要考查了正比例函数图像以及一次函数图像与系数的关系,熟练掌握相关概念是解题关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    先将y=(k-2)x+3k化为:y=(x+3)k-2x,可得当x=-3时,不论k取何实数,函数y=(x+3)k-2x的值为6,即可得到直线y=(k-2)x+3k一定经过的定点为(-3,6).
    【详解】
    根据题意,y=(k-2)x+3k可化为:y=(x+3)k-2x,
    ∴当x=-3时,不论k取何实数,函数y=(x+3)k-2x的值为6,
    ∴直线y=(k-2)x+3k一定经过的定点为(-3,6),
    故答案为:(-3,6).
    本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.
    10、
    【解析】
    先分母有理化,然后进行二次根式的乘法运算.
    【详解】
    解:原式==(2+)= .
    故答案为:2+1.
    本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    11、.
    【解析】
    试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴An(4n﹣4,0).
    ∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点An+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=.故答案为.
    考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.
    12、3.5
    【解析】
    原式=4-=3=3.5,
    故答案为3.5.
    13、12
    【解析】
    根据相似三角形的性质列比例式求解即可.
    【详解】
    ∵,,,,
    ∴,
    ∴,
    ∴AC=12.
    故答案为:12.
    本题考查了相似三角形的性质,如果两个三角形相似,那么它们的对应角相等,对应边的比,对应高的比,对应中线的比,对应角平分线的比,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.
    三、解答题(本大题共5个小题,共48分)
    14、(1)全体实数;(3)3,5;(4)图象见解析;(5)函数y的图象关于x=对称,答案不唯一.
    【解析】
    (1)函数y=|2x-1|的自变量x的取值范围是全体实数;
    (3)取m=3把x=3代入y=|2x-1|计算即可;
    (4)根据(3)中的表格描点连线即可;
    (5)根据函数的图象,即可求解.
    【详解】
    解:(1)函数y=|2x-1|的自变量x的取值范围是全体实数;
    故答案为全体实数;
    (3)m、n的取值不唯一,取m=3,把x=3代入y=|2x-1|,得n=|2×3-1|=5,
    即m=3,n=5.
    故答案为3,5.
    (4)图象如图所示;(要求描点、连线正确)

    (5)函数y的图象关于x=对称,答案不唯一,符合函数y的性质均可.
    此题考查了一次函数的图象与性质,掌握一次函数的性质是解题的关键.
    15、(1)①详见解析;②DG+DF=DP;(2)不成立,数量关系式应为:DG-DF=DP
    【解析】
    (1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直角三角形,△HPG≌△DPF,根据直角三角形性质可得HD=DP;(2)过点P作PH⊥PD交射线DA于点H,得到△HPD为等腰直角三角形,证△HPG≌△DPF,得HG=DF,DH=DG-HG=DG-DF,DG-DF=DP.
    【详解】
    (1)①∵由矩形性质得∠GPF=∠HPD=90°,∠ADC=90°,
    ∴∠GPH=∠FPD,
    ∵DE平分∠ADC,
    ∴∠PDF=∠ADP=45°,
    ∴△HPD为等腰直角三角形,
    ∴∠DHP=∠PDF=45°,
    在△HPG和△DPF中,
    ∵,
    ∴△HPG≌△DPF(ASA),
    ∴PG=PF;
    ②结论:DG+DF=DP,
    由①知,△HPD为等腰直角三角形,△HPG≌△DPF,
    ∴HD=DP,HG=DF,
    ∴HD=HG+DG=DF+DG,
    ∴DG+DF=DP;
    (2)不成立,数量关系式应为:DG-DF=DP,
    如图,过点P作PH⊥PD交射线DA于点H,
    ∵PF⊥PG,
    ∴∠GPF=∠HPD=90°,
    ∴∠GPH=∠FPD,
    ∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,
    ∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,
    ∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,
    ∴∠GHP=∠FDP=180°-45°=135°,
    在△HPG和△DPF中,

    ∴△HPG≌△DPF,
    ∴HG=DF,
    ∴DH=DG-HG=DG-DF,
    ∴DG-DF=DP.
    考核知识点:矩形性质的运用,等腰直角三角形.综合运用全等三角形判定和等腰直角三角形性质是关键.
    16、旗杆的高度为12米.
    【解析】
    因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度AB=x米,则绳子的长度AC=(x+1)米,根据勾股定理即可求得旗杆的高度.
    【详解】
    设旗杆高AB=xm,则绳子长为AC=(x+1)m.
    在Rt△ABC中,∠ABC=90°,
    由勾股定理得AB2+BC2=AC2,
    所以x2+52=(x+1)2.
    解得x=12m.
    所以旗杆的高度为12米.
    本题考查了勾股定理的应用,勾股定理揭示了直角三角形三边长之间的数量关系:直角三角形两直角边的平方和等于斜边的平方.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解这在几何的计算问题中是经常用到的,请同学们熟记并且能熟练地运用它.
    17、(1) ,画图形见解析;(2)
    【解析】
    (1)将点代入,运用待定系数法求解即可;
    (2)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.
    【详解】
    解:(1)∵点A(2,0)在函数y=kx+3的图象上,
    ∴2k+3=0,解得k=,
    函数解析式为,
    图像如下图所示:
    (2)在中,令y=0,即,解得x=2,
    令x=0,即,解得y=3,
    ∴函数图象与x轴、y轴分别交于点B(2,0)和A(0,3),
    ∴该函数图象与坐标轴围成的三角形的面积即为三角形AOB的面积,
    ∴.
    本题考查待定系数法求函数解析式及三角形的面积的知识,难度不大,关键是正确得出函数解析式及坐标与线段长度的转化.
    18、(1)平均数是24.11,中位数是24.1,众数是21;(2)厂家最关心的是众数.
    【解析】
    (1)根据“平均数、中位数和众数的定义及确定方法”结合表中的数据进行分析解答即可;
    (2)根据“平均数、中位数和众数的统计意义”进行分析判断即可.
    【详解】
    解:(1)由题意知:男生鞋号数据的平均数==24.11;
    男生鞋号数据的众数为21;
    男生鞋号数据的中位数==24.1.
    ∴平均数是24.11,中位数是24.1,众数是21.
    (2)∵在平均数、中位数和众数中,众数代表的是销售量最大的鞋号,
    ∴厂家最关心的是众数.
    本题考查求平均数、众数、中位数.熟知:“平均数、中位数和众数的定义及各自的统计意义”是解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、56°
    【解析】
    根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AD//BC,
    ∴∠FEC=∠1=62°,
    ∵将一张矩形纸片ABCD沿 EF折叠后,点C落在AB边上的点 G 处,
    ∴∠GEF=∠FEC=62°,
    ∴∠BEG=180°-∠GEF-∠FEC=56°,
    故答案为56°.
    本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.
    20、乙
    【解析】因为S甲2≈0.01>S乙2≈0.002,方差小的为乙,所以本题中比较稳定的是乙.
    21、
    【解析】
    根据题意可以设m+=a(a为整数),=b(b为整数),求出m,然后代人=b求解即可.
    【详解】
    由题意设m+=a(a为整数),=b(b为整数),
    ∴m=a-,
    ∴=b,
    整理得:

    ∴b2-8=1,8a-ab2=-b,
    解得:b=±3,a=±3,
    ∴m=±3-.
    故答案为​±3-.
    本题主要考查的是实数的有关知识,根据题意可以设m+=a(a为整数),=b(b为整数),整理求出a,b的值是解答本题的关键..
    22、173.1.
    【解析】
    根据加权平均数的定义求解可得.
    【详解】
    解:(172×3+173×2+174×2+171×3)÷(3+2+2+3)
    =(116+346+348+121)÷10
    =1731÷10
    =173.1(cm)
    答:该篮球队队员平均身高是173.1cm.
    故答案为:173.1.
    本题主要考查加权平均数,熟练掌握加权平均数的定义是解题的关键.
    23、
    【解析】
    首先提出公因式,然后进一步利用完全平方公式进行因式分解即可.
    【详解】
    解:原式=
    =.
    故答案为: .
    本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1);(2).
    【解析】
    (1)先分别进行化简,然后再合并同类二次根式即可;
    (2)先利用平方差公式以及完全平方公式进行展开,然后再进行加减运算即可.
    【详解】
    (1)原式=
    =
    =;
    (2)原式=
    =.
    本题考查了二次根式的化简,二次根式的混合运算,熟练掌握相关的运算法则是解题的关键.
    25、不是,理由见解析.
    【解析】
    先根据勾股定理求出OB的长,再根据梯子的长度不变求出OD的长,根据BD=OD-OB即可得出结论.
    【详解】
    解:如图,设梯子下滑至CD,
    ∵Rt△OAB中,AB=2.5m,AO=2.4m,
    ∴OB=m,
    同理,Rt△OCD中,
    ∵CD=2.5m,OC=2.4-0.4=2m,
    ∴OD=m,
    ∴BD=OD-OB=1.5-0.7=0.8(m).
    答:梯子底端B向外移了0.8米.
    本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
    26、(1)四边形为菱形,见解析;(2)
    【解析】
    (1)根据已知矩形性质证明四边形为平行四边形,再根据折叠的性质证明,得出即可得出结论;
    (2)根据折叠特性设未知边,构造勾股定理列方程求解.
    【详解】
    解: 四边形为菱形;
    理由如下:
    四边形为矩形,
    四边形为平行四边形
    由折叠的性质,则
    四边形为菱形,

    .
    由得
    设.
    在,
    解得:,

    .
    此题考查了矩形的性质、菱形的判定和性质、勾股定理解答,考查了翻折不变性,综合性较强,是一道好题.
    题号





    总分
    得分
    批阅人
    x

    ﹣2
    0

    1
    m

    y

    5
    1
    0
    1
    n

    鞋号
    23.5
    24
    24.5
    25
    25.5
    26
    人数
    3
    4
    4
    7
    1
    1
    相关试卷

    重庆市兼善中学2024年九上数学开学质量检测模拟试题【含答案】: 这是一份重庆市兼善中学2024年九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    河南郑州中学原区郑州中学原实验学校2024-2025学年九上数学开学达标检测模拟试题【含答案】: 这是一份河南郑州中学原区郑州中学原实验学校2024-2025学年九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,四象限,则m的取值范围是,解答题等内容,欢迎下载使用。

    河南省郑州市实验中学2024年数学九上开学教学质量检测模拟试题【含答案】: 这是一份河南省郑州市实验中学2024年数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map