重庆合川区凉亭中学2024年九年级数学第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若,则= ( )
A.B.C.D.无法确定
2、(4分)下列事件:①上海明天是晴天,②铅球浮在水面上,③平面中,多边形的外角和都等于360度,属于确定事件的个数有( )
A.0个B.1个C.2个D.3个
3、(4分)若正比例函数y=kx的图象经过点(2,1),则k的值为( )
A.﹣B.C.﹣2D.2
4、(4分)如图,在中,已知是边上的高线,平分,交于点,,,则的面积等于( )
A.B.C.D.
5、(4分)如图,在长方形中,,在上存在一点,沿直线把折叠,使点恰好落在边上的点处,若的面积为,那么折叠的的面积为( )
A.30B.20C.D.
6、(4分)计算: ( )
A.5B.7C.-5D.-7
7、(4分)在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有( )个.
A.5B.4C.3D.2
8、(4分)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10,则△EDB的周长是( )
A.4B.6C.8D.10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)正比例函数的图象经过点(-1,2),则此函数的表达式为___________.
10、(4分)我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.
①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.
则正确的排序为________ (填序号)
11、(4分)当x≤2时,化简:=________
12、(4分)如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF , 其中正确的是______(只填写序号).
13、(4分)在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)感知:如图①,在正方形中,是一点,是延长线上一点,且,求证:;
拓展:在图①中,若在,且,则成立吗?为什么?
运用:如图②在四边形中,,,,是上一点,且,,求的长.
15、(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点。已知点A在格点,请在给定的网格中按要求画出图形.
(1)以为顶点在图甲中画一个面积为21的平行四边形且它的四个顶点都在格点。
(2)以为顶点在图乙中画一个周长为20的菱形且它的四个顶点都在格点。
16、(8分)如图,在菱形ABCD中,CE⊥AB交AB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DC,CF至点G,H,使FH=CG,连接AG,DH交于点P.
(1)依题意补全图1;
(2)猜想AG和DH的数量关系并证明;
(3)若∠DAB=70°,是否存在点G,使得△ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.
17、(10分)解方程:x2- 4x= 1.
18、(10分)学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.
(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?
(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)有一块田地的形状和尺寸如图,则它的面积为_________.
20、(4分)一天,明明和强强相约到距他们村庄560米的博物馆游玩,他们同时从村庄出发去博物馆,明明到博物馆后因家中有事立即返回.如图是他们离村庄的距离y(米)与步行时间x(分钟)之间的函数图象,若他们出发后6分钟相遇,则相遇时强强的速度是_____米/分钟.
21、(4分)如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为 .
22、(4分)如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…,依次进行下去,则点的坐标为______,点的坐标为______.
23、(4分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:将矩形绕点逆时针旋转得到矩形.
(1)如图,当点在上时,求证:
(2)当旋转角的度数为多少时,?
(3)若,请直接写出在旋转过程中的面积的最大值.
25、(10分)如图,已知在中,分别是的中点,连结.
(1)求证:四边形是平行四边形;
(2)若,求四边形的周长.
26、(12分)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.
(1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
设比值为,然后用表示出、、,再代入算式进行计算即可求解.
【详解】
设,
则,,,
.
故选:.
本题考查了比例的性质,利用设“”法表示出、、是解题的关键,设“”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.
2、C
【解析】
确定事件就是一定发生或一定不发生的事件,根据定义即可作出判断
【详解】
解:①上海明天是晴天,是随机事件;
②铅球浮在水面上,是不可能事件,属于确定事件;
③平面中,多边形的外角和都等于360度,是必然事件,属于确定事件;
故选:C.
此题考查随机事件,解题关键在于根据定义进行判断
3、B
【解析】
根据一次函数图象上点的坐标特征,把(2,1)代入y=kx中即可计算出k的值.
【详解】
把(2,1)代入y=kx得2k=1,解得k=.
故选B.
本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).
直线上任意一点的坐标都满足函数关系式y=kx+b.
4、A
【解析】
作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.
【详解】
解:作EF⊥BC于F,
∵BE平分∠ABC,ED⊥AB,EF⊥BC,
∴EF=DE=2,
故选:A
本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.
5、D
【解析】
由三角形面积公式可求BF的长,由勾股定理可求AF的长,即可求CF的长,由勾股定理可求DE的长,即可求△ADE的面积.
【详解】
解:∵四边形ABCD是矩形
∴AB=CD=6cm,BC=AD,
∵,
即:
∴BF=8(cm)
在Rt△ABF中,(cm)
∵折叠后与重合,
∴AD=AF=10cm,DE=EF,
∴BC=10cm,
∴FC=BC-BF=10-8=2(cm),
在Rt△EFC中,,
∴,解之得:,
∴(cm2),
故选:D.
本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.
6、A
【解析】
先利用二次根式的性质进行化简,然后再进行减法运算即可.
【详解】
=6-1
=5,
故选A.
本题考查了二次根式的化简,熟练掌握是解题的关键.
7、B
【解析】
试题解析:∵A(2,−2),
①如图:若OA=AP,则
②如图:若OA=OP,则
③如图:若OP=AP,则
综上可得:符合条件的点P有四解.
故选B.
点睛:等腰三角形的问题,一般都分类讨论.
8、D
【解析】
先证出Rt△ACD≌Rt△AED,推出AE=AC,△DBE的周长=DE+EB+BD=AB,即可求解.
【详解】
解:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,
∴∠C=∠AED=90°,CD=DE,
在Rt△ACD和Rt△AED中
∴Rt△ACD≌Rt△AED,
∴AE=AC,
∴△DBE的周长
=DE+EB+BD
=CD+DB+EB
=BC+EB
=AC+EB
=AE+EB
=AB
=10,
故选D.
本题考查了角平分线性质,全等三角形的性质和判定的应用,能求出AE=AC,CD=DE是解此题的关键,注意:角平分线上的点到角的两边的距离相等.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=-2x
【解析】
设正比例函数是y=kx(k≠0).利用正比例函数图象上点的坐标特征,将点(-1,2)代入该函数解析式,求得k值即可.
【详解】
设正比例函数是y=kx(k≠0).
∵正比例函数的图象经过点(-1,2),
∴2=-k,
解答,k=-2,
∴正比例函数的解析式是y=-2x;
故答案是:y=-2x.
10、②①④⑤③
【解析】
根据统计调查的一般过程: ①问卷调查法……收集数据,②列统计表……整理数据,③画统计图……描述数据,所以解决上述问题要经历的及格重要步骤进行排序为: ②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体,故答案为: ②①④⑤③.
11、2-x
【解析】
,
∵x≤2,
∴原式=2-x.
12、①②③⑤
【解析】
AD=AB,AE=AF,∠B=∠D,△ABE≌△ADF, ①正确,
BE=DF, CE=CF, ②正确,
∠EFC=∠CEF=45°,
AE=EF=FA,∠AFE=60°,
∠AEB=75°. ③正确.
设FC=1,EF=,勾股定理知,DF=,AD=,
S△ABE+S△ADF=2=.
S△CEF=. ⑤正确.无法判断圈四的正确性,
①②③⑤正确.
故答案为①②③⑤.
【详解】
请在此输入详解!
13、70°
【解析】
在平行四边形ABCD中,∠C=∠A,则求出∠A即可.
【详解】
根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,
∵∠A=70°,
∴∠C=70°.
故答案为:70°.
此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)GE=BE+GD成立,理由见解析;(3)
【解析】
(1)利用已知条件,可证出△BCE≌△DCF(SAS),即可得到CE=CF;
(2)借助(1)的结论得出∠BCE=∠DCF,再通过角的计算得出∠GCF=∠GCE,由SAS可得△ECG≌△FCG,则EG=GF,从而得出GE=DF+GD=BE+GD;
(3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形),再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理构造方程即可求出DE.
【详解】
(1)证明:如图①,在正方形ABCD中,BC=CD,∠B=∠ADC=90°,
∴∠CDF=90°,即∠B=∠CDF =90°,
在△BCE和△DCF中,
,
∴△BCE≌△DCF(SAS),
∴CE=CF;
(2)解:如图①,GE=BE+GD成立,理由如下:
由(1)得△BCE≌△DCF,
∴∠BCE=∠DCF,
∴∠ECD+∠ECB=∠ECD+∠FCD,
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,
∴∠GCF=∠ECF−∠ECG=45°,则∠GCF=∠GCE,
在△GEC和△GFC中,
,
∴△GEC≌△GFC(SAS),
∴EG=GF,
∴GE=DF+GD=BE+GD;
(3)解:如图②,过C作CG⊥AD于G,
∴∠CGA=90°,
在四边形ABCD中,AD∥BC,∠A=∠B=90°,
∴四边形ABCG为矩形,
又∵AB=BC,
∴四边形ABCG为正方形,
∴AG=BC=AB=16,
∵∠DCE=45°,由(1)和(2)的结论可得:ED=BE+DG,
设DE=x,
∵,
∴AE=12,DG=x−4,
∴AD=AG−DG=20−x
在Rt△AED中,
由勾股定理得:DE2=AD2+AE2,
即x2=(20−x)2+122
解得:,
即.
本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点考查学生的数学学习能力,是一道好题.
15、见解析
【解析】
(1)因为平行四边形为21,所以平行四边形的高可以是7,底边长为3,利用平行四边形的性质得出符合题意的答案;
(2)因为平行四边形为20,所以平行四边形的高可以是4,底边长为5,直接利用菱形的性质得出符合题意的答案.
【详解】
解:(1)如图甲所示:平行四边形ABCD即为所求;
(2)如图乙所示:菱形ABCD即为所求.
此题考查菱形、平行四边形的性质,正确掌握菱形、平行四边形的性质是解题关键.
16、 (1)见解析;(2) AG=DH,理由见解析;(3) 不存在.理由见解析.
【解析】
【分析】(1)依题意画图;
(2)根据菱形性质得,∥,;由点为点关于的对称点,得垂直平分,故,,所以,再证,
由,,得.可证△≌△.
(3)由(2)可知,∠DAG=∠CDH,∠G=∠GAB,
证得∠DPA=∠PDG+∠G=∠DAG+∠GAB=70°>60°,故△ADP不可能是等边三角形.
【详解】
(1)补全的图形,如图所示.
(2)AG=DH.
证明:∵四边形ABCD是菱形,
∴,∥,.
∵点为点关于的对称点,
∴垂直平分.
∴,.
∴.
又∵,
∴.
∵,,
∴.
∴△≌△.
∴.
(3)不存在.
理由如下:
由(2)可知,∠DAG=∠CDH,∠G=∠GAB,
∴∠DPA=∠PDG+∠G=∠DAG+∠GAB=70°>60°.
∴△ADP不可能是等边三角形.
【点睛】本题考核知识点:菱形,轴对称,等边三角形. 解题关键点:此题比较综合,要熟记菱形性质,全等三角形的判定和性质,轴对称性质,等边三角形判定.
17、x1=2+,x2=2-
【解析】
试题分析:方程两边都加上一次项系数一半的平方,进行配方,两边直接开平方即可求得方程的解.
试题解析:x2-4x=1
x2-4x+4=1+4
(x-2)2=5
x-2=
即:x1=2+,x2=2-
考点:解一元二次方程---配方法.
18、(1)小龙符合学校广播站的应聘条件;(2)小龙至少读了20分钟.
【解析】
(1)首先设小龙每分钟读个字,则小龙奶奶每分钟读个字,然后根据题意列出方程,求解即可判定是否满足学校广播站的应聘条件;
(2)首先设小龙读了分钟,则小龙奶奶读了分钟,然后根据题意列出不等式,求解即可.
【详解】
(1)设小龙每分钟读个字,则小龙奶奶每分钟读个字
根据题意,得
解得
经检验,是所列方程的解,并且符合实际问题的意义;
∵学校广播站招聘的条件是每分钟250-270字
∴小龙符合学校广播站的应聘条件;
(2)设小龙读了分钟,则小龙奶奶读了分钟,
由题意知
解得
∴小龙至少读了20分钟.
此题主要考查分式方程以及一元一次不等式的实际应用,解题关键是弄清题意,找出等式关系.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
先连接AC,求出AC的长,再判断出△ABC的形状,继而根据三角形面积公式进行求解即可.
【详解】
连接AC,
∵△ACD是直角三角形,
∴,
因为102+122=132,所以△ABC是直角三角形,
则要求的面积即是两个直角三角形的面积差,
即×24×10-×6×8
=120-24
=1,
故答案为:1.
本题考查了勾股定理及其逆定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
20、80
【解析】
根据图形找出点A、B的坐标利用待定系数法求出线段AB的函数解析式,代入x=6求出点F的坐标,由此即可得出直线OF的解析式.
【详解】
.解:观察图形可得出:点A的坐标为(5,560),点B的坐标为(12,0),
设线段AB的解析式为y=kx+b(k≠0),
∴ ,解得:,
∴线段AB的解析式为y=﹣80x+960(5≤x≤12).
当x=6时,y=480,
∴点F的坐标为(6,480),
∴直线OF的解析式为y=80x.
所以相遇时强强的速度是80米/分钟.
故答案为80
本题考查了一次函数的应用以及待定系数法求出函数解析式,观察图形找出点的坐标再利用待定系数法求出函数解析式是解题的关键.
21、
【解析】
分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.
由图象可知,此时.
22、 (16,32) (−21009,−21010).
【解析】
根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8、A9等的坐标,根据坐标的变化找出变化规律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n为自然数)”,依此规律结合2019=504×4+3即可找出点A2019的坐标.
【详解】
当x=1时,y=2,
∴点A1的坐标为(1,2);
当y=−x=2时,x=−2,
∴点A2的坐标为(−2,2);
同理可得:A3(−2,−4),A4(4,−4),A5(4,8),A6(−8,8),A7(−8,−16),A8(16,−16),A9(16,32),…,
∴A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),
A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数).
∵2019=504×4+3,
∴点A2019的坐标为(−2504×2+1,−2504×2+2),即(−21009,−21010).
故答案为(16,32), (−21009,−21010).
此题主要考查一次函数与几何规律探索,解题的关键是根据题意得到坐标的变化规律.
23、1
【解析】
试题分析:∵直角△ABC中,AC=,∠B=60°,
∴AB==1,BC==2,
又∵AD=AB,∠B=60°,
∴△ABD是等边三角形,
∴BD=AB=1,
∴CD=BC﹣BD=2﹣1=1.
故答案是:1.
考点:旋转的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)当旋转角的度数为时,;(3)
【解析】
(1)由旋转的性质和矩形的性质,找出证明三角形全等的条件,根据全等三角形的性质即可得到答案;
(2)连接,由旋转的性质和矩形的性质,证明,根据全等三角形的性质即可得到答案;
(3)根据题意可知,当旋转至AG//CD时,的面积的最大,画出图形,求出面积即可.
【详解】
(1)证明:矩形是由矩形旋转得到的,
,
,
又,
∴,
,
;
(2)解:连接
矩形是由矩形旋转得到的,
,
,
,
∴,
,
即,
;
,
,
,
当旋转角的度数为时,;
(3)解:如图:当旋转至AG//CD时,的面积的最大,
∵,
∴,,
∴;
∴的面积的最大值为.
本题考查了旋转的性质,矩形的性质,全等三角形的判定和性质,以及三角形的面积公式,解题的关键是熟练掌握旋转的性质,矩形的性质,全等三角形的判定和性质,正确做出辅助线,利用所学的性质进行求解.注意利用数形结合的思想进行解题.
25、 (1)见解析; (2)四边形的周长为12.
【解析】
(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;
(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.
【详解】
(1)∵分别是的中点,
∴,
∴四边形是平行四边形.
(2)∵,是的中点,,
∴.
∴四边形是菱形.
∵,
∴四边形的周长为12.
本题考查了平行四边形的性质和判定,菱形的判定和性质,三角形的中位线的性质,熟练掌握平行四边形的性质是解题的关键.
26、(1)△CDF是等腰三角形;(2)∠APD=45°.
【解析】
(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;
(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.
【详解】
(1)△CDF是等腰直角三角形,理由如下:
∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
在△FAD与△DBC中,,
∴△FAD≌△DBC(SAS),
∴FD=DC,∴△CDF是等腰三角形,
∵△FAD≌△DBC,∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形;
(2)作AF⊥AB于A,使AF=BD,连结DF,CF,
如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,
在△FAD与△DBC中,
,∴△FAD≌△DBC(SAS),
∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,
∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,
∴△CDF是等腰直角三角形,∴∠FCD=45°,
∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,
∴AE∥CF,∴∠APD=∠FCD=45°.
题号
一
二
三
四
五
总分
得分
批阅人
重庆合川区凉亭中学2023-2024学年数学八上期末学业水平测试试题【含解析】: 这是一份重庆合川区凉亭中学2023-2024学年数学八上期末学业水平测试试题【含解析】,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的是等内容,欢迎下载使用。
重庆合川区凉亭中学2023-2024学年数学八年级第一学期期末监测试题【含解析】: 这是一份重庆合川区凉亭中学2023-2024学年数学八年级第一学期期末监测试题【含解析】,共20页。试卷主要包含了答题时请按要求用笔,某村的居民自来水管道需要改造,如图所示分别平分和,则的度数为等内容,欢迎下载使用。
重庆合川区凉亭中学2022-2023学年九年级数学第一学期期末教学质量检测试题含解析: 这是一份重庆合川区凉亭中学2022-2023学年九年级数学第一学期期末教学质量检测试题含解析,共16页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。