搜索
    上传资料 赚现金
    英语朗读宝

    重庆梁平县联考2024年数学九上开学复习检测试题【含答案】

    重庆梁平县联考2024年数学九上开学复习检测试题【含答案】第1页
    重庆梁平县联考2024年数学九上开学复习检测试题【含答案】第2页
    重庆梁平县联考2024年数学九上开学复习检测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆梁平县联考2024年数学九上开学复习检测试题【含答案】

    展开

    这是一份重庆梁平县联考2024年数学九上开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=75°,∠AED的度数是( )
    A.120°B.115°C.105°D.100°
    2、(4分)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是( )
    A.52和54 B.52
    C.53 D.54
    3、(4分)某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )
    A.甲B.乙丙C.甲乙D.甲丙
    4、(4分)一次函数的图像不经过第四象限,那么的取值范围是( )
    A.B.C.D.
    5、(4分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )
    A.(x+3)2=1B.(x﹣3)2=1
    C.(x+3)2=19D.(x﹣3)2=19
    6、(4分)要使分式有意义,则x的取值应满足( )
    A.x≠2B.x=2C.x=1D.x≠1
    7、(4分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于 ( )
    A.1cmB.2cmC.3cmD.4cm
    8、(4分)学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)当x=_____时,分式的值为零.
    10、(4分)分解因式:____.
    11、(4分)如图,矩形ABCD中,AB=16cm,BC=8cm,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.
    12、(4分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而_____.(填“增大”或“减小”)
    13、(4分)分解因式:a3﹣2a2+a=________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,某学校有一块长为30米,宽为10米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间及周边留有宽度相等的人行通道.
    若设计人行通道的宽度为2米,那么修建的两块矩形绿地的面积共为多少平方米?
    若要修建的两块矩形绿地的面积共为216平方米,求人行通道的宽度.
    15、(8分)(1)化简;(m+2+)•
    (2)先化简,再求值;(+x+2)÷,其中|x|=2
    16、(8分)如图,直线y=-x+4分别与x轴、y轴交于A、B两点.
    (1)求A、B两点的坐标;
    (2)已知点C坐标为(2,0),设点C关于直线AB的对称点为D,请直接写出点D的坐标.
    17、(10分)如图,在平面直角坐标系xy中,矩形OABC的顶点B坐标为(12,5),点D在 CB边上从点C运动到点B,以AD为边作正方形ADEF,连BE、BF,在点D运动过程中,请探究以下问题:
    (1)△ABF的面积是否改变,如果不变,求出该定值;如果改变,请说明理由;
    (2)若△BEF为等腰三角形,求此时正方形ADEF的边长;
    (3)设E(x,y),直接写出y关于x的函数关系式及自变量x的取值范围.
    18、(10分)为传播“绿色出行,低碳生活”的理念,小贾同学的爸爸从家里出发,骑自行车去图书馆看书,图1表达的是小贾的爸爸行驶的路程(米)与行驶时间(分钟)的变化关系
    (1)求线段BC所表达的函数关系式;
    (2)如果小贾与爸爸同时从家里出发,小贾始终以速度120米/分钟行驶,当小贾与爸爸相距100米是,求小贾的行驶时间;
    (3)如果小贾的行驶速度是米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出的取值范围。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若BC=4,BG=3,则GE的长为________.
    20、(4分)在平面直角坐标系中,点在第________象限.
    21、(4分)一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为_______.
    22、(4分)如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的值是__________.
    23、(4分)如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,点A1的坐标为(3,1),则点B1的坐标为_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图1,的所对边分别是,且,若满足,则称为奇异三角形,例如等边三角形就是奇异三角形.
    (1)若,判断是否为奇异三角形,并说明理由;
    (2)若,,求的长;
    (3)如图2,在奇异三角形中,,点是边上的中点,连结,将分割成2个三角形,其中是奇异三角形,是以为底的等腰三角形,求的长.
    25、(10分)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(-1,2)、B两点,求m、n的值并直接写出点B的坐标.
    26、(12分)如图,在中,,于,平分,分别交,于,,于.连接,求证:四边形是菱形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    如解图所示,根据多边形的外角和即可求出∠5,然后根据平角的定义即可求出结论.
    【详解】
    解:∵∠1=∠2=∠3=∠4=75°,
    ∴∠5=360°﹣75°×4=360°﹣300°=60°,
    ∴∠AED=180°﹣∠5=180°﹣60°=120°.
    故选:A.
    此题考查的是多边形的外角和平角的定义,掌握多边形的外角和都等于360°是解决此题的关键.
    2、A
    【解析】
    试题分析:众数是指一组数据中出现次数最多的数字,数据52和54都出现2次,其它只出现一次,所以,众数为52和54。
    考点:众数的计算
    3、C
    【解析】
    利用平均数的定义分别进行计算成绩,然后判断谁优秀.
    【详解】
    解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,
    乙的总评成绩=98×50%+90×20%+95×30%=95.5,
    丙的总评成绩=80×50%+88×20%+90×30%=84.6,
    ∴甲乙的学期总评成绩是优秀.
    故选:C.
    本题考查加权平均数,掌握加权成绩等于各项成绩乘以不同的权重的和是解题的关键.
    4、A
    【解析】
    根据一次函数经过的象限即可确定,解不等式即可得出的取值范围.
    【详解】
    ∵一次函数的图像不经过第四象限,
    ∴,
    解得,
    故选:A.
    本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.
    5、D
    【解析】
    方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.
    【详解】
    方程移项得:,
    配方得:,
    即,
    故选D.
    6、A
    【解析】
    根据分式的性质,要使分式有意义,则分式的分母不等于0.
    【详解】
    根据题意可得要使分式有意义,则
    所以可得
    故选A.
    本题主要考查分式的性质,关键在于分式的分母不能为0.
    7、B
    【解析】
    解:如图,
    ∵AE平分∠BAD交BC边于点E,
    ∴∠BAE=∠EAD,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC=5,
    ∴∠DAE=∠AEB,
    ∴∠BAE=∠AEB,
    ∴AB=BE=3,
    ∴EC=BC-BE=5-3=1.
    故选B.
    8、A
    【解析】
    根据题意:徐徐上升的国旗的高度与时间的变化是稳定的,即为直线上升.
    故选A.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1
    【解析】
    要使分式的值为0,则必须分式的分子为0,分母不能为0,进而计算x的值.
    【详解】
    解:由题意得,x﹣1=0且x+1≠0,
    解得x=1.
    故答案为:1.
    本题主要考查分式为0的情况,关键在于分式的分母不能为0.
    10、(3x+1)2
    【解析】
    原式利用完全平方公式分解即可.
    【详解】
    解:原式=(3x+1)2,
    故答案为:(3x+1)2
    此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.
    11、1
    【解析】
    因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.
    【详解】
    解:易证△AFD′≌△CFB,
    ∴D′F=BF,
    设D′F=x,则AF=16-x,
    在Rt△AFD′中,(16-x)2=x2+82,
    解之得:x=6,
    ∴AF=AB-FB=16-6=10,
    故答案为:1.
    本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.
    12、减小
    【解析】
    【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.
    【详解】∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),
    ∴0=k+3,
    ∴k=﹣3,
    ∴y的值随x的增大而减小,
    故答案为减小.
    【点睛】本题考查了一次函数的图象与性质,熟练掌握待定系数法以及一次函数的增减性与一次函数的比例系数k之间的关系是解题的关键.
    13、a(a﹣1)1
    【解析】
    试题分析:此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.a3﹣1a1+a=a(a1﹣1a+1)=a(a﹣1)1.故答案为a(a﹣1)1.
    考点:提公因式法与公式法的综合运用.
    三、解答题(本大题共5个小题,共48分)
    14、(1)修建的两块矩形绿地的面积共为144平方米,(2)人行通道的宽度为1米.
    【解析】
    根据题意得:两块矩形绿地的长为米,宽为米,可求得面积;
    设人行通道的宽度为x米,则两块矩形绿地的长为米,宽为米,
    根据题意得:,解方程可得.
    【详解】
    解:根据题意得:
    两块矩形绿地的长为米,
    宽为米,
    面积为米,
    答:修建的两块矩形绿地的面积共为144平方米,
    设人行通道的宽度为x米,
    则两块矩形绿地的长为米,
    宽为米,
    根据题意得:,
    解得:舍去,,
    答:人行通道的宽度为1米.
    本题考核知识点:一元二次方程应用. 解题关键点:根据题意列出方程.
    15、(1)m+1;(2)1
    【解析】
    (1)先对括号里面的式子进行合并,再利用完全平方公式进行计算即可解答.
    (2)先合并括号里面的,再把除法变成乘法,约分合并,最后把|x|=2,代入即可.
    【详解】
    解:(1)原式==m+1;
    (2)原式= ,
    由|x|=2,得到x=2或﹣2(舍去),
    当x=2时,原式=1.
    此题考查分式的化简求值,解题关键在于掌握运算法则.
    16、 (1) A坐标(4,0)、B 坐标(0 , 4)(2) D(4, 2).
    【解析】
    分析:(1)令x=0求出与y轴的交点,令y=0求出与x轴的交点;
    (2)由(1)可得△AOB为等腰直角三角形,则∠BAO=45°,因为点D和点C关于直线AB对称,所以∠BAO=∠BAD=45°,所以AD∥y轴且AD=AC,即可求得点D的坐标。
    详解:(1) ∵直线y=-x+4分别与x轴、y轴交于A、B两点,
    当x=0时,则y=4;当y=0,则x=4,
    ∴点A坐标为(4,0)、点B 坐标为(0, 4),
    (2)D点坐标为D(4,2).
    点睛:本题考查了一次函数与坐标轴的交点,等腰直角三角形的判定与性质,轴对称的性质,熟练掌握一次函数与坐标轴的交点、轴对称的性质是解答本题的关键.
    17、(1)不变,,理由见解析;(2)5或或;(3)y=-x+22(5x17)
    【解析】
    (1)由“SAS”可证△ABD≌△FHA,可得HF=AB=5,即可求△ABF的面积;
    (2)分三种情况讨论,由等腰三角形的性质和勾股定理可求正方形ADEF的边长;
    (3)由全等三角形的性质,DH=AB=5,EH=DB,可得y=EH+5=DB+5,x=12-DB+DH=17-DB,即可求y关于x的函数关系式.
    【详解】
    解:(1)作FH⊥AB交AB延长线于H,
    ∵正方形ADEF中,AD=AF,∠DAF=90°,
    ∴∠DAH+∠FAH=90°.
    ∵∠H=90°,
    ∴∠FAH+∠AFH=90°,
    ∴∠DAH=∠AFH,
    ∵矩形OABC中,AB=5,∠ABD=90°,
    ∴∠ABD=∠H∴△ABD≌△FHA,
    ∴FH=AB=5,
    ∴;
    (2)①当EB=EF时,作EG⊥CB
    ∵正方形ADEF中,ED=EF,
    ∴ED=EB ,
    ∴DB=2DG,
    同(1)理得△ABD≌△GDE,
    ∴DG=AB=5 , ∴ DB=10,
    ∴;
    ②当EB=BF时,∠BEF=∠BFE,
    ∵正方形ADEF中,ED=AF,∠DEF=∠AFE=90°,
    ∴∠BED=∠BFA,
    ∴△ABF≌△DBE,
    ∴BD=AB=5 ,
    ∵矩形OABC中,∠ABD=90°,
    ∴ ;
    ③当FB=FE时,作FQ⊥AB,
    同理得BQ=AQ=, BD=AQ=,
    ∴;
    (3)当5≤x≤12时,如图,
    由(2)可知DH=AB=5,EH=DB,且E(x,y),
    ∴y=EH+5=DB+5,x=12-DB+DH=17-DB,
    ∴y=22-x,
    当12<x≤17时,如图,
    同理可得:x=12-DB+5=17-DB,y=DB+5,
    ∴y=22-x,
    综上所述:当5≤x≤17时,y=22-xy=-x+22(5x17).
    本题是四边形综合题,考查了正方形的性质,矩形的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
    18、(1);
    (2)小贾的行驶时间为分钟或分钟;
    (3)
    【解析】
    (1)结合图形,运用待定系数法即可得出结论;
    (2)设小贾的行驶时间为x分钟,根据题意列方程解答即可;
    (3)分别求出当OD过点B、C时,小贾的速度,结合图形,利用数形结合即可得出结论.
    【详解】
    (1)设线段BC所表达的函数关系式为y=kx+b,
    根据题意得,
    解得,
    ∴线段BC所表达的函数关系式为y=200x-1500;
    (2)设小贾的行驶时间为x分钟,
    根据题意得150x-120x=100或1500-120x=100或120x-1500=100或120x-150(x-5)=100或150(x-5)-120x=100或3000-120x=100,
    解得x=或x=或x=或x=或x=或x=,
    即当小贾与爸爸相距100米时,小贾的行驶时间为分钟或分钟或分钟或分钟或分钟或分钟;
    (3)如图:

    当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);
    当线段OD过点C时,小贾的速度为3000÷22.5=(米/分钟).
    结合图形可知,当100<v<时,小贾在途中与爸爸恰好相遇两次(不包括家、图书馆两地).
    本题考查了一次函数的应用;熟练掌握一次函数的图象和性质是解决问题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    根据菱形的性质、折叠的性质,以及∠ABC=120°,可以得到△ABD△BCD都是等边三角形,根据三角形的内角和和平角的意义,可以找出△BGE∽△DFG,对应边成比例,设AF=x、AE=y,由比例式列出方程,解出y即可.
    【详解】
    解:∵菱形ABCD中,∠ABC=120°,
    ∴AB=BC=CD=DA,∠A=60°,
    ∴AB=BC=CD=DA=BD=3+1=4,
    ∴∠ADB=∠ABD=60°,
    由折叠得:AF=FG,AE=EG,∠EGF=∠A=60°,
    ∵∠DFG+∠DGF=180°-60°=120°,∠BGE+∠DGF=180°-60°=120°,
    ∴∠DFG=∠BGE,
    ∴△BGE∽△DFG,
    ∴ ,
    设AF=x=FG,AE=y=EG,则:DF=4-x,BE=4-y,
    即: ,
    当 时,即:x= ,
    当 时,即:x= ,
    ∴ ,
    解得:y1=0舍去,y2=,
    故答案为:.
    本题考查菱形的性质、折叠的性质、等边三角形的判定和性质以及分式方程等知识,根据折叠和菱形等边三角形的性质进行转化,从而得到关于EG的关系式,是解决问题的关键.
    20、二
    【解析】
    根据各象限内点的坐标特征解答.
    【详解】
    解:点位于第二象限.
    故答案为:二.
    本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    21、.
    【解析】
    根据众数为1,求出a的值,然后根据平均数的概念求解:
    ∵众数为1,∴a=1.
    ∴平均数为:.
    考点:1.众数;2.平均数.
    22、1
    【解析】
    过点D作DE⊥BC于E,根据角平分线的作法可知CD平分∠ACB,然后根据角平分线的性质可得DE=AD=3,然后根据三角形的面积公式求面积即可.
    【详解】
    解:过点D作DE⊥BC于E
    由题意可知:CD平分∠ACB

    ∴DE=AD=3

    ∴=
    故答案为:1.
    此题考查的是用尺规作图作角平分线和角平分线的性质,掌握角平分线的作法和角平分线的性质是解决此题的关键.
    23、(1,2)
    【解析】
    根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移1个单位,向上平移1个单位,进而可得a、b的值.
    【详解】
    解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,1),
    ∴线段AB向右平移1个单位,向上平移1个单位,
    ∴a=0+1=1,b=1+1=2,
    点B1的坐标为(1,2),
    故答案为(1,2),
    本题考查坐标与图形的变化--平移,解题关键是掌握点的坐标的变化规律.
    二、解答题(本大题共3个小题,共30分)
    24、(1)是,理由见解析;(2);(3)
    【解析】
    (1)根据奇异三角形的概念直接进行判断即可.
    (2)根据勾股定理以及奇异三角形的概念直接列式进行计算即可.
    (3)根据△ABC是奇异三角形,且b=2,得到,由题知:AD=CD=1,且BC=BD=a,根据△ADB是奇异三角形,则或,分别求解即可.
    【详解】
    (1)∵, ,
    ∴,

    即△ABC是奇异三角形.
    (2)∵∠C=90°,



    ,

    解得:.
    (3)∵△ABC是奇异三角形,且b=2

    由题知:AD=CD=1,BC=BD=a
    ∵△ADB是奇异三角形,且,
    ∴或
    当时,
    当时,与矛盾,不合题意.
    考查勾股定理以及奇异三角形的定义,读懂题目中奇异三角形的定义是解题的关键.
    25、m=-2,n=-2,B(1,-2).
    【解析】
    利用待定系数法即可解决问题,根据对称性或利用方程组确定点B坐标.
    【详解】
    解:∵直线y=mx与双曲线相交于A(-1,2),
    ∴m=-2,n=-2,
    ∵A,B关于原点对称,
    ∴B(1,-2).
    本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,属于中考常考题型.
    26、详见解析
    【解析】
    求出CE=EH,AC=AH,证△CAF≌△HAF,推出∠ACD=∠AHF,求出∠B=∠ACD=∠FHA,推出HF∥CE,推出CF∥EH,得出平行四边形CFHE,根据菱形判定推出即可.
    【详解】
    ∵∠ACB=90°,AE平分∠BAC,EH⊥AB,
    ∴CE=EH,
    在Rt△ACE和Rt△AHE中,AE=AE,CE=EH,
    ∴Rt△ACE≌ Rt△AHE(HL),
    ∴AC=AH,
    ∵AE平分∠CAB,
    ∴∠CAF=∠HAF,
    在△CAF和△HAF中,

    ∴△CAF≌△HAF(SAS),
    ∴∠ACD=∠AHF,
    ∵CD⊥AB,∠ACB=90°,
    ∴∠CDA=∠ACB=90°,
    ∴∠B+∠CAB=90°,∠CAB+∠ACD=90°,
    ∴∠ACD=∠B=∠AHF,
    ∴FH∥CE,
    ∵CD⊥AB,EH⊥AB,
    ∴CF∥EH,
    ∴四边形CFHE是平行四边形,
    ∵CE=EH,
    ∴四边形CFHE是菱形.
    本题考查了平行四边形的性质和判定,菱形的判定,三角形的内角和定理,全等三角形的性质和判定,角平分线性质等知识点的应用,熟练掌握相关知识是解题的关键.
    题号





    总分
    得分
    纸笔测试
    实践能力
    成长记录

    90
    83
    95

    98
    90
    95

    80
    88
    90

    相关试卷

    重庆实验外国语2024年九上数学开学复习检测试题【含答案】:

    这是一份重庆实验外国语2024年九上数学开学复习检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    重庆巴蜀常春藤2025届数学九上开学复习检测模拟试题【含答案】:

    这是一份重庆巴蜀常春藤2025届数学九上开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届重庆市北碚区西南大附中九上数学开学复习检测试题【含答案】:

    这是一份2025届重庆市北碚区西南大附中九上数学开学复习检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map