|试卷下载
终身会员
搜索
    上传资料 赚现金
    重庆市九龙坡区西彭三中学2024-2025学年数学九年级第一学期开学达标测试试题【含答案】
    立即下载
    加入资料篮
    重庆市九龙坡区西彭三中学2024-2025学年数学九年级第一学期开学达标测试试题【含答案】01
    重庆市九龙坡区西彭三中学2024-2025学年数学九年级第一学期开学达标测试试题【含答案】02
    重庆市九龙坡区西彭三中学2024-2025学年数学九年级第一学期开学达标测试试题【含答案】03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市九龙坡区西彭三中学2024-2025学年数学九年级第一学期开学达标测试试题【含答案】

    展开
    这是一份重庆市九龙坡区西彭三中学2024-2025学年数学九年级第一学期开学达标测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,在中,平分,交于点,平分,交于点,,,则长为( )
    A.B.C.D.
    2、(4分)如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,线段PQ有( )次平行于AB?
    A.1B.2C.3D.4
    3、(4分)矩形一个内角的平分线把矩形的一边分成和,则矩形的周长为( )
    A.和B.C.D.以上都不对
    4、(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为( )
    A.B.1C.D.
    5、(4分)如图,在中,已知,分别为边,的中点,连结,若,则等于( )
    A.70ºB.67. 5ºC.65ºD.60º
    6、(4分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是( )
    A.1.95元B.2.15元C.2.25元D.2.75元
    7、(4分)如图,平行四边形ABCD的周长是32cm,△ABC的周长是26cm,E、F分别是边AB、BC的中点,则EF的长为( )
    A.8cmB.6cmC.5cmD.4cm
    8、(4分)在□ABCD中,∠A:∠B=7:2,则∠C等于( )
    A.40°B.80°C.120°D.140°
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一次函数的图像是由直线__________________而得.
    10、(4分) “同位角相等”的逆命题是__________________________.
    11、(4分)在□ABCD中,O是对角线的交点,那么____.
    12、(4分)如图是由6个形状大小完全相同菱形组成的网格,若菱形的边长为1,一个内角(∠O)为60°,△ABC的各顶点都在格点上,则BC边上的高为______.
    13、(4分)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=_______度.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)旅客乘乘车按规定可以随身携带一定质量的行李,如果超过规定,则需购买行李票,设行李票y(元)是行李质量x(千克)的一次函数.其图象如图所示.
    (1)当旅客需要购买行李票时,求出y与x之间的函数关系式;
    (2)当旅客不愿意购买行李票时,最多可以携带多少行李?
    15、(8分)某地建设一项水利工程,工程需要运送的土石方总量为160万米1.
    (1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米1)之间的函数关系式;
    (2)当运输公司平均每天的工作量15万米1,完成任务所需的时间是多少?
    (1)为了能在150天内完成任务,平均每天的工作量至少是多少万米1?
    16、(8分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。
    (1)计划到2020年底,全省5G基站的数量是多少万座?;
    (2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。
    17、(10分)我国南宋时期数学家秦九昭及古希腊的几何学家海伦对于问题:“已知三角形的三边,如何求三角形的面积”进行了研究,并得到了海伦—秦九昭公式:如果一个三角形的三条边分别为,记,那么三角形的面积为,请用此公式求解:在中,,,,求的面积.
    18、(10分)(1)解方程组;(2)解不等式组,并把解集在数轴上表示出来.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)在平面直角坐标系中,中,点,若随变化的一族平行直线与(包括边界)相交,则的取值范围是______.
    20、(4分)若一元二次方程的两个实数根分别是、,则一次函数的图象一定不经过第____________象限.
    21、(4分)如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为_______________.
    22、(4分)若反比例函数的图象经过点,则的图像在_______象限.
    23、(4分)若分式的值为0,则的值是 _____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.
    求:(1)两条对角线的长度;(2)菱形的面积.
    25、(10分)如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.
    (1)求A点坐标;
    (2)求△OAC的面积;
    (3)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标;
    (4)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.
    26、(12分)某校检测学生跳绳水平,抽样调查了部分学生的“一分钟跳绳”成绩,并绘制了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.
    (1)抽样的人数是________人,补全频数分布直方图,扇形中________;
    (2)本次调查数据的中位数落在________组;
    (3)如果“一分钟跳绳”成绩大于等于120次为优秀,那么该校2250名学生中“1分钟跳绳”成绩为优秀的大约有多少人?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    先证明AB=AF,DC=DE,再根据EF=AF+DE﹣AD,求出AD,即可得出答案.
    【详解】
    ∵四边形是平行四边形
    ∴,,∥
    ∵平分,平分
    ∴,
    ∴,



    故选A
    本题考查了平行四边形的性质,考点涉及平行线性质以及等角对等边等知识点,熟练掌握平行四边形的性质是解答本题的关键.
    2、D
    【解析】
    ∵矩形ABCD,AD=12cm,
    ∴AD=BC=12cm,
    ∵PQ∥AB,AP∥BQ,
    ∴四边形ABQP是平行四边形,
    ∴AP=BQ,
    ∴Q走完BC一次就可以得到一次平行,
    ∵P的速度是1cm/秒,
    ∴两点运动的时间为12÷1=12s,
    ∴Q运动的路程为12×4=48cm,
    ∴在BC上运动的次数为48÷12=4次,
    ∴线段PQ有4次平行于AB,
    故选D.
    3、A
    【解析】
    利用角平分线得到∠ABE=∠CBE,矩形对边平行得到∠AEB=∠CBE.那么可得到∠ABE=∠AEB,可得到AB=AE.那么根据AE的不同情况得到矩形各边长,进而求得周长.
    【详解】
    ∵矩形ABCD中BE是角平分线.
    ∴∠ABE=∠EBC.
    ∵AD∥BC.
    ∴∠AEB=∠EBC.
    ∴∠AEB=∠ABE.
    ∴AB=AE.
    平分线把矩形的一边分成3cm和5cm.
    当AE=3cm时:则AB=CD=3cm,AD=CB=8cm则矩形的周长是:22cm;
    当AE=5cm时:AB=CD=5cm,AD=CB=8cm,则周长是:26cm.
    故选A.
    本题主要运用了矩形性质,角平分线的定义和等角对等边知识,正确地进行分情况讨论是解题的关键.
    4、B
    【解析】
    根据题意求出AB的值,由D是AB中点求出CD的值,再由题意可得出EF是△ACD的中位线即可求出.
    【详解】
    ∠ACB=90°,∠A=30°,
    BC=AB.
    BC=2,
    AB=2BC=22=4,
    D是AB的中点,
    CD=AB= 4=2.
    E,F分别为AC,AD的中点,
    EF是△ACD的中位线.
    EF=CD= 2=1.
    故答案选B.
    本题考查了直角三角形的性质,三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.
    5、A
    【解析】
    由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出的度数.
    【详解】
    ∵D,E分别为AB,AC的中点,
    ∴DE是三角形的中位线,
    ∴DE∥BC,
    ∴∠AED=∠C=70°,
    故选A
    此题考查平行线的性质,三角形中位线定理,难度不大
    6、C
    【解析】
    根据加权平均数的定义列式计算可得.
    【详解】
    解:这天销售的矿泉水的平均单价是(元),
    故选:C.
    本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
    7、C
    【解析】
    根据平行四边形的性质得出AB+BC=16cm,进而得出AC的长度,利用三角形中位线解答即可.
    【详解】
    解:∵平行四边形ABCD的周长是32cm,
    ∴AB+BC=16cm,
    ∵△ABC的周长是26cm,
    ∴AC=26-16=10cm,
    ∵E、F分别是边AB、BC的中点,
    ∴EF=0.5AC=5cm,
    故选:C.
    此题考查平行四边形的性质,关键是根据平行四边形的性质得出AB+BC=16cm,进而得出AC的长度.
    8、A
    【解析】
    根据平行四边形的性质得到AD∥BC,AB∥CD,由平行线的性质得到∠A,再由平行线的性质得到∠C=40°.
    【详解】
    根据题意作图如下:
    因为BCD是平行四边形,所以AD∥BC,AB∥CD;因为AD∥BC,所以∠A是∠B的同
    的同旁内角,即∠A+∠B=180°;又因为∠A:∠B=7:2,所以可得∠A==140°;又因为AB∥CD,所以∠C是∠A的同旁内角,所以∠C=180°-140°=40°.故选择A.
    本题考查平行四边形的性质和平行线的性质,解题的关键是掌握平行四边形的性质和平行线的性质.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、向上平移五个单位
    【解析】
    根据“上加下减”即可得出答案.
    【详解】
    一次函数的图像是由直线向上平移五个单位得到的,
    故答案为:向上平移五个单位.
    本题考查一次函数图象的平移,熟记“上加下减,左加右减”的平移规律是解题的关键.
    10、如果两个角相等,那么这两个角是同位角.
    【解析】
    因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,
    所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.
    11、
    【解析】
    由向量的平行四边形法则及相等向量的概念可得答案.
    【详解】
    解:因为:□ABCD,
    所以,,
    所以:.
    故答案为:.
    本题考查向量的平行四边形法则,掌握向量的平行四边形法则是解题的关键.
    12、
    【解析】
    如图,连接EA、EC,先证明∠AEC=90°,E、C、B共线,求出AE即可.
    【详解】
    解:如图,连接EA,EC,
    ∵菱形的边长为1,由题意得∠AEF=30°,∠BEF=60°,AE=,
    ∴∠AEC=90°,
    ∵∠ACE=∠ACG=∠BCG=60°,
    ∴∠ECB=180°,
    ∴E、C、B共线,
    ∴AE即为△ACB的BC边上的高,
    ∴AE=,
    故答案为.
    本题考查菱形的性质,特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.
    13、240°
    【解析】
    ∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°。
    ∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°
    三、解答题(本大题共5个小题,共48分)
    14、(1);(2)当旅客不愿意购买行李票时,最多可以携带30千克行李.
    【解析】
    (1)根据题意设一次函数关系式为y=kx+b,把图上的点(60,5),(90,10)代入关系式利用待定系数法可求得函数关系式.
    (2)令y=0,解方程x-5=0即可求解.
    【详解】
    (1)设(1)
    将 , 代入
    解得:
    得:
    (2)当时

    解得
    答:当旅客不愿意购买行李票时,最多可以携带30千克行李
    本题考查的是用一次函数解决实际问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
    15、(1);(2)24天;(1)2.4万米1.
    【解析】
    (1)根据题意列方程即可.
    (2)将已知数值代入函数关系式计算即可.
    (1)根据题意列出分式不等式,求解即可.
    【详解】
    解:(1)运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米1)之间的函数关系式为:xy=160,
    故y=;
    (2)∵当运输公司平均每天的工作量15万米1,
    ∴完成任务所需的时间是:y==24(天),
    答:完成任务所需的时间是24天;
    (1)为了能在150天内完成任务,设平均每天的工作量是m,
    格局题意可得:150≥,
    解得:x≥2.4,
    答:平均每天的工作量至少是2.4万米1.
    本题主要考查反比例函数的应用,关键在于根据题意列出反比例函数的关系式.
    16、(1)到2020年底,全省5G基站的数量是6万座;(2)2020年底到2022年底,全省5G基站数量的年平均增长率为.
    【解析】
    (1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;
    (2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
    【详解】
    解:(1)由题意可得:到2020年底,全省5G基站的数量是(万座).
    答:到2020年底,全省5G基站的数量是6万座.
    (2)设年平均增长率为,由题意可得:

    解得:,(不符合,舍去)
    答:2020年底到2022年底,全省5G基站数量的年平均增长率为.
    本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
    17、
    【解析】
    利用阅读材料,先计算出p的值,然后根据海伦公式计算△ABC的面积;
    【详解】
    解:,,,
    ,
    .
    考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.
    18、(1);(2)-2≤x<0,见解析.
    【解析】
    (1)根据加减消元法解方程即可求解;
    (2)先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集,并把解集在数轴上表示出来即可.
    【详解】
    解:(1),
    ②×3-①×2得5x=15,
    解得:x=3,
    把x=3代入②得3×3-2y=7,
    解得:y=1.
    故原方程组的解为;
    (2),
    解不等式①得:x<0,
    解不等式②得:x≥-2,
    故不等式组的解集为-2≤x<0,
    在数轴上表示为:
    本题考查了解一元一次不等式组和在数轴上表示不等式组的解集、解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能根据不等式的解找出不等式组的解集是解(2)的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据题意,可知点B到直线的距离最短,点C到直线的距离最长,求出两个临界点b的值,即可得到取值范围.
    【详解】
    解:根据题意,点,
    ∵直线与(包括边界)相交,
    ∴点B到直线的距离了最短,点C到直线的距离最长,
    当直线经过点B时,有

    ∴;
    当直线经过点C时,有

    ∴;
    ∴的取值范围是:.
    本题考查了一次函数的图像和性质,以及一次函数的平移问题,解题的关键是掌握一次函数的性质,一次函数的平移,正确选出临界点进行解题.
    20、四
    【解析】
    根据根与系数的关系可得出a+b=1、ab=4,再结合一次函数图象与系数的关系,即可得出一次函数y=abx+a+b的图象经过的象限,此题得解.
    【详解】
    解:∵一元二次方程的两个实数根分别是a、b,
    ∴a+b=1,ab=4,
    ∴一次函数的解析式为y=4x+1.
    ∵4>0,1>0,
    ∴一次函数y=abx+a+b的图象经过第一、二、三象限,不经过第四象限,
    故答案为:四.
    本题考查了根与系数的关系以及一次函数图象与系数的关系,利用根与系数的关系结合一次函数图象与系数的关系,找出一次函数图象经过的象限是解题的关键.
    21、
    【解析】
    设AC与BD交于点E,则∠ABE=60°,根据菱形的周长求出AB的长度,在RT△ABE中,求出AE,继而可得出AC的长.
    【详解】
    解:在菱形ABCD中,∠ABC=120°,
    ∴∠ABE=60°,AC⊥BD,
    ∵菱形ABCD的周长为16,
    ∴AB=4,
    在RT△ABE中,AE=ABsin∠ABE=,
    故可得AC=2AE=.
    故答案为.
    此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
    22、二、四
    【解析】
    用待定系数法求出k的值,根据反比例函数的性质判断其图像所在的象限即可.
    【详解】
    解:将点代入得,解得:
    因为k<0,所以的图像在二、四象限.
    故答案为:二、四
    本题考查了反比例函数的性质,,当k>0时,图像在一、三象限,当k<0时,图像在二、四象限,正确掌握该性质是解题的关键.
    23、1
    【解析】
    分式值为零的条件:分子等于零且分母不等于零,由此列出不等式和等式,求解即可.
    【详解】
    ∵分式的值为0,
    ∴,
    ∴x=1.
    故答案是:1.
    考查了分式的值为零的条件,解题关键是:分式值为零的条件是分子等于零且分母不等于零.
    二、解答题(本大题共3个小题,共30分)
    24、(1)AC=2cm,BD=2cm;(2)2 cm2
    【解析】
    (1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;
    (2)由菱形的面积等于其对角线积的一半,即可求得答案.
    【详解】
    (1)∵四边形ABCD是菱形,
    ∴AB=BC,AC⊥BD,AD∥BC,
    ∴∠ABC+∠BAD=180°,
    ∵∠ABC与∠BAD的度数比为1:2,
    ∴∠ABC=×180°=60°,
    ∴∠ABO=∠ABC=30°,
    ∵菱形ABCD的周长是8cm.
    ∴AB=2cm,
    ∴OA=AB=1cm

    ∴AC=2OA=2cm,BD=2OB=2cm;
    (2)S菱形ABCD=(cm2).
    此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
    25、(1)A点坐标是(2,3);(2)=;(3)P点坐标是(0, );(4)点Q是坐标是(,)或(,-).
    【解析】
    解析
    联立方程,解方程即可求得;
    C点位直线y=﹣2x+7与x轴交点,可得C点坐标为(,0),由(1)得A点坐标,可得的值;
    (3)设P点坐标是(0,y),根据勾股定理列出方程,解方程即可求得;
    (4)分两种情况:①当Q点在线段AB上:作QD⊥y轴于点D,则QD=x,根据
    =-列出关于x的方程解方程求得即可;②当Q点在AC的延长线上时,作QD⊥x轴于点D,则QD=-y,根据=- 列出关于y的方程解方程求得即可.
    【详解】
    解(1)解方程组:得:,
    A点坐标是(2,3);
    (2) C点位直线y=﹣2x+7与x轴交点,可得C点坐标为(,0)
    ==
    (3)设P点坐标是(0,y ),
    △OAP是以OA为底边的等腰三角形,
    OP=PA,
    ,
    解得y=,
    P点坐标是(0, ),
    故答案为(0, );
    (4)存在;
    由直线y=-2x+7可知B(0,7),C(,0),
    ==<6,
    ==7>6,
    Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),
    当Q点在线段AB上:作QD⊥y轴于点D,如图1,
    则QD=x,=-=7-6=1,
    OBQD=1,即: 7x=1,
    x=,
    把x=代入y=-2x+7,得y=,
    Q的坐标是(,),
    当Q点在AC的延长线上时,作QD⊥x轴于点D,如图2
    则QD=-y,
    =- =6-=,
    OCQD=,即:,
    y=-,
    把y=-代入y=-2x+7,解得x=
    Q的坐标是(,-),
    综上所述:点Q是坐标是(,)或(,-).
    本题是一次函数的综合题,考查了交点的求法,勾股定理的应用,三角形面积的求法等,分类讨论思想的运用是解题的关键.
    26、(1)60,见解析,84;(2)C;(3)1500人
    【解析】
    (1)用A类人数除以它所占的百分比得到调查的总人数;用总人数减去A、B、C、E组的人数即可得到D组人数,可以补全直方图;然后用B类人数除以调查的总人数×360°即可得到m的值;
    (2)根据总人数确定中位数是第几个数据,再从直方图中找出这个数据落在哪一组;
    (3)先算出抽样调查中“一分钟跳绳”成绩大于等于120次的人数,除以调查的总人数再乘以2250即可得到答案
    【详解】
    解:(1)6÷10%=60,所以抽样人数为60人;
    60-(6+14+19+5)=16人,所以补全直方图如下:
    扇形统计图中B所对应的圆心角为14÷60×360°=84°,所以84;
    故答案为:60,见解析,84
    (2)∵调查总人数为60
    ∴中位数应该是第30和第31个数据的平均数
    由图可知第30、31个数据都落在C组,所以中位数落在C组
    故答案为C
    (3)由图知:“一分钟跳绳”成绩大于等于120次的调查人数为19+16+5=40人
    ∴人
    所以该校2250名学生中“1分钟跳绳”成绩为优秀的大约有1500人
    故答案为1500.
    本题考查了条形统计图与扇形统计图,样本估计总体以及中位数等,注意计算要认真.
    题号





    总分
    得分
    批阅人
    相关试卷

    重庆市九龙坡区西彭三中学2023年数学八年级第一学期期末达标检测模拟试题【含解析】: 这是一份重庆市九龙坡区西彭三中学2023年数学八年级第一学期期末达标检测模拟试题【含解析】,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列变形中是因式分解的是等内容,欢迎下载使用。

    重庆市九龙坡区西彭三中学2023-2024学年数学八年级第一学期期末检测试题【含解析】: 这是一份重庆市九龙坡区西彭三中学2023-2024学年数学八年级第一学期期末检测试题【含解析】,共15页。试卷主要包含了答题时请按要求用笔,已知=,=,则的值为等内容,欢迎下载使用。

    重庆市九龙坡区西彭三中学2022年数学九上期末质量检测试题含解析: 这是一份重庆市九龙坡区西彭三中学2022年数学九上期末质量检测试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=2等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map