重庆市六校2024年数学九年级第一学期开学经典试题【含答案】
展开
这是一份重庆市六校2024年数学九年级第一学期开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下面哪个点不在函数y=-2x+3的图象上( )
A.(-5,13)B.(0.5,2)C.(1,2)D.(1,1)
2、(4分)如图,Rt△ABC中,∠ACB=90°,若AB=15,则正方形ADEC和正方形BCFG的面积之和为( )
A.150B.200C.225D.无法计算
3、(4分)已知一组数据5,5,6,6,6,7,7,则这组数据的方差为( )
A.B.C.D.6
4、(4分)一个盒子中装有20颗蓝色幸运星,若干颗红色幸运星和15颗黄色幸运星,小明通过多次摸取幸运星试验后发现,摸取到红色幸运星的频率稳定在0.5左右,若小明在盒子中随机摸取一颗幸运星,则摸到黄色幸运星的可能性约为( )
A.B.C.D.
5、(4分)如图两张长相等,宽分别是1和3的矩形纸片上叠合在一起,重叠部分为四边形ABCD,且AB+BC=6,则四面行ABCD的面积为( )
A.3B.C.9D.
6、(4分)如图所示,在数轴上点A所表示的数为,则的值为( )
A.B.C.D.
7、(4分)在长度为1的线段上找到两个黄金分割点P,Q,则PQ=( )
A.B.C.D.
8、(4分)一次信息技术模拟测试后,数学兴趣小组的同学随机统计了九年级20名学生的成绩记录如下:有5人得10分,6人得9分,5人得8分,4人得7分这20名学生成绩的中位数和众数分别是
A.10分,9分B.9分,10分C.9分,9分D.分,9分
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲,乙两人进行飞镖比赛,每人各投1次,甲的成绩(单位:环)为:9,8,9,1,10,1.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是______.(填“甲”或“乙”)
10、(4分)如图,中,,平分,点为的中点,连接,若的周长为24,则的长为______.
11、(4分)如图 ,在中, ,,点、为 边上两点, 将、分别沿、折叠,、两点重合于点,若,则的长为__________.
12、(4分)若一个多边形内角和等于1260°,则该多边形边数是______.
13、(4分)如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:
(1)表中的a=______,b=______,c=______;
(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.
15、(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,建立平面直角坐标系,△ABC的顶点均在格点上.(不写作法)
(1)以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出B1的坐标;
(2)再把△A1B1C1绕点C1 顺时针旋转90°,得到△A2B2C1,请你画出△A2B2C1,并写出B2的坐标.
16、(8分)在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:
(1)上表中的a= ;
(2)“摸到白球”的概率的估计值是 (精确到0.1)
(3)试估算口袋中黑、白两种颜色的球各有多少个?
17、(10分)在中,D,E,F分别是三边,,上的中点,连接,,,,已知.
(1)观察猜想:如图,当时,①四边形的对角线与的数量关系是________;②四边形的形状是_______;
(2)数学思考:如图,当时,(1)中的结论①,②是否发生变化?若发生变化,请说明理由;
(3)拓展延伸:如图,将上图的点A沿向下平移到点,使得,已知,分别为,的中点,求四边形与四边形的面积比.
18、(10分)已知x、y满足方程组,求代数式的值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.
20、(4分)如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=_____.
21、(4分)定义一种运算法则“”如下:,例如:,若,则的取值范围是____________.
22、(4分)矩形中,对角线交于点,,则的长是__________.
23、(4分)如图,A、B两点分别位于一个池塘的两端,小聪想用绳子测量A、B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A、B的点C,找到AC、BC的中点D、E,并且测出DE的长为13m,则A、B间的距离为______m.
二、解答题(本大题共3个小题,共30分)
24、(8分)列方程解应用题:
某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.
25、(10分)如图,一次函数的图象与反比例函数()的图象交于A(-3,2),B(n,4)两点.
(1)求一次函数与反比例函数的解析式;
(2)点C(-1,0)是轴上一点,求△ABC的面积.
26、(12分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分别把A,B,C,D四个选项的点代入函数y=-2x+3中,由此进行判断,能求出结果.
【详解】
解:∵y=-2x+3,
∴当x=-5时,y=13,故(-5,13)在函数y=-2x+3的图象上;
当x=0.5时,y=2,故(0.5,2)在函数y=-2x+3的图象上;
当x=1时,y=12,故(1,2)不在函数y=-2x+3的图象上;
当x=1时,y=1,故(1,1)在函数y=-2x+3的图象上.
故选:C.
本题考查不满足一次函数的点的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.
2、C
【解析】
小正方形的面积为AC的平方,大正方形的面积为BC的平方,两正方形面积的和为AC2+BC2,对于Rt△ABC,由勾股定理得AB2=AC2+BC2,AB=15,故可以求出两正方形面积的和.
【详解】
正方形ADEC的面积为: AC2 ,
正方形BCFG的面积为:BC2 ;
在Rt△ABC中,AB2 = AC2+ BC2,AB=15,
则AC2 + BC2 = 225cm2,
故选:C.
此题考查勾股定理,熟记勾股定理的计算公式是解题的关键.
3、A
【解析】
先求出这组数据的平均数,然后代入方差计算公式求出即可.
【详解】
解:∵平均数=(5+5+6+6+6+7+7)=6,
S2= [(5-6)2+(5-6)2+(6-6)2+(6-6)2+(6-6)2+(7-6)2+(7-6)2]= .
故选:A.
本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
4、C
【解析】
设袋中红色幸运星有x个,根据“摸取到红色幸运星的频率稳定在0.5左右”列出关于x的方程,解之可得袋中红色幸运星的个数,再根据频率的定义求解可得.
【详解】
解:设袋中红色幸运星有x个,
根据题意,得:,
解得:x=35,
经检验:x=35是原分式方程的解,
则袋中红色幸运星的个数为35个,
若小明在盒子中随机摸取一颗幸运星,
则摸到黄色幸运星的频率为,
故选:C.
本题考查了频率的计算,解题的关键是设出求出红色幸运星的个数并熟记公式.
5、D
【解析】
过D分别作DE⊥BC,DF⊥BA,分别交BC、BA延长线于E、F,由矩形性质可得四边形ABCD是平行四边形,根据AB+BC=6,利用平行四边形面积公式可求出AB的长,即可求出平行四边形ABCD的面积.
【详解】
过D分别作DE⊥BC,DF⊥BA,分别交BC、BA延长线于E、F,
∵两张长相等,宽分别是1和3的矩形纸片上叠合在一起,重叠部分为四边形ABCD,
∴AD//BC,AB//CD,DF=3,DE=1,
∴四边形ABCD是平行四边形,
∴SABCD=AB×DF=BC×DE,即3AB=BC,
∵AB+BC=6,
∴AB+3AB=6,
解得:AB=,
∴SABCD=AB×DF=×3=.
故选D.
本题考查了矩形的性质及平行四边形的判定及面积公式,正确作出辅助线并根据平行四边形面积公式求出AB的长是解题关键.
6、A
【解析】
根据勾股定理求出直角三角形的斜边,即可得出答案.
【详解】
解:如图:
则BD=1,CD=2,
由勾股定理得:,即AC=,
∴,
故选A.
本题考查了数轴和实数,勾股定理的应用,能求出BC的长是解此题的关键.
7、C
【解析】
【分析】先根据黄金分割的定义得出较长的线段AP=BQ=AB,再根据PQ=AP+BQ-AB,即可得出结果.
【详解】:根据黄金分割点的概念,可知AP=BQ=,
则PQ=AP+BQ-AB=
故选:C
【点睛】此题主要是考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(
)叫做黄金比.熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解.
8、C
【解析】
根据中位数和众数的定义进行分析.
【详解】
20名学生的成绩中第10,11个数的平均数是9,所以中位数是9,9分出现次数最多,所以众数是9.
故选:C
本题考核知识点:众数和中位数. 解题关键点:理解众数和中位数的定义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、甲.
【解析】
先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.
【详解】
甲的平均数,
所以甲的方差,
因为甲的方差比乙的方差小,
所以甲的成绩比较稳定.
故答案为:甲.
本题考查方差的定义:一般地设n个数据,,,…,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
10、18
【解析】
利用等腰三角形三线合一的性质可得BD=CD,又因E为AC中点,根据三角形的中位线定理及直角三角形斜边中线的性质可得CE=AC=7.5,DE=AB=7.5,再由△CDE的周长为24 ,求得CD=9,即可求得BC的长.
【详解】
∵AB=AC,AD平分∠BAC,
∴BD=CD,AD⊥BC,
∵E为AC中点,
∴CE=AC==7.5,DE=AB==7.5,
∵CD+DE+CE=24,
∴CD=24-7.5-7.5=9,
∴BC=18,
故答案为18 .
本题考查了等腰三角形的性质、三角形的中位线定理及直角三角形斜边的性质,求得CE=AC=7.5,DE=AB=7.5是解决问题的关键.
11、3 或2
【解析】
过点A作AG⊥BC,垂足为G,由等腰三角形的性质可求得AG=BG=GC=2,设BD=x,则DF=x,EF=7-x,然后在Rt△DEF中依据勾股定理列出关于x的方程,从而可求得DG的值,然后依据勾股定理可求得AD的值.
【详解】
如图所示:过点A作AG⊥BC,垂足为G.
∵AB=AC=2 ,∠BAC=90°,
∴BC==1.
∵AB=AC,AG⊥BC,
∴AG=BG=CG=2.
设BD=x,则EC=7-x.
由翻折的性质可知:∠B=∠DFA=∠C=∠AFE=35°,DB=DF,EF=EC.
∴DF=x,EF=7-x.
在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,解得:x=3或x=3.
当BD=3时,DG=3,AD=
当BD=3时,DG=2,AD=
∴AD的长为3 或2
故答案为:3 或2
本题主要考查的是翻折的性质、勾股定理的应用、等腰直角三角形的性质,依据题意列出关于x的方程是解题的关键.
12、1
【解析】
试题分析:这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
试题解析:根据题意,得
(n-2)•180=1260,
解得n=1.
考点: 多边形内角与外角.
13、1:3
【解析】
试题解析:设平行四边形的面积为1,
∵四边形ABCD是平行四边形,
∴
又∵M是的AB的中点,
则
∴上的高线与上的高线比为
∴
∴
S阴影面积
则阴影部分的面积与▱ABCD的面积比为.
故填空答案:.
三、解答题(本大题共5个小题,共48分)
14、(1)14;0.08;4;(2)详见解析;(3)80.
【解析】
(1)根据频率分布表确定出总人数,进而求出a,b,c的值即可;
(2)把上面的频数分布直方图补充完整,并画出频数分布折线图,如图所示;
(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.
【详解】
解:(1)根据题意得:a=6÷0.12×0.28=14,b=1﹣(0.12+0.28+0.32+0.20)=0.08,c=6÷0.12×0.08=4;
故答案为:14;0.08;4;
(2)频数分布直方图、折线图如图,
(3)根据题意得:1000×(4÷50)=80(人),
则你估计该校进入决赛的学生大约有80人.
此题考查了频数(率)分布折线图,用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.
15、(1)B1的坐标(﹣5,4);(2)B2的坐标(﹣1,2).
【解析】
(1)作出各点关于原点的对称点,再顺次连接,并写出B1的坐标即可;
(2)根据图形旋转的性质画出△A2B2C2,并写出B2的坐标即可.
【详解】
(1)如图,△A1B1C1即为所求,由图可知B1的坐标(﹣5,4);
(2)如图,△A2B2C2即为所求,由图可知B2的坐标(﹣1,2).
考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.
16、 (1) 0.58;(2) 0.6;(3)白球12(个),黑球8 (个)
【解析】
(1)利用频率=频数÷样本容量直接求解即可;
(2)根据统计数据,当n很大时,摸到白球的频率接近0.60;
(3)根据利用频率估计概率,可估计摸到白球的概率为0.60,然后利用概率公式计算白球的个数.
【详解】
(1)a= =0.58,
故答案为:0.58;
(2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,
故答案为:0.60;
(3)由(2)摸到白球的概率估计值为0.60,
所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20−12=8(个).
答:黑球8个,白球12个.
本题考查利用频率估计概率,事件A发生的频率等于事件A出现的次数除以实验总次数;在实验次数非常大时,事件A发生的频率约等于事件发生的概率,本题可据此作答;对于(3)可直接用概率公式.
17、(1)①,②平行四边形;(2)结论①不变,结论②由平行四边形变为菱形,理由详见解析;(3)
【解析】
(1)根据三角形中位线定理,即可得出,进而得解;由三角形中位线定理得出DE∥AC, ,即可判定为平行四边形;
(2)由中位线定理得出,,,然后根据,得出,,即可判定平行四边形是菱形;
(3)首先设,,根据等腰直角三角形的性质,得出,进而得出,然后由三角形中位线定理得,,经分析可知:,且和互相垂直平分,即可得出四边形为正方形,又由,,,得出四边形为矩形,即可得出面积比.
【详解】
解:(1)①,②平行四边形;
由已知条件和三角形中位线定理,得
又∵
∴
②由三角形中位线定理得,
DE∥AC, ,
∴四边形是平行四边形;
(2)结论①不变,结论②由平行四边形变为菱形,
四边形是菱形的理由是:
∵,都是的中位线,
∴,
∴四边形是平行四边形
∵是的中位线,
∴
∵
∴,
∴
∴平行四边形是菱形.
(3)设,
当,是等腰直角三角形,
∴
∴
由三角形中位线定理得,,
∴,且和互相垂直平分
∴四边形为正方形,
∵,EF⊥AD,
∴
∴
又∵,
∴四边形为矩形,
∴,
∴所求面积比为
(1)此题主要考查三角形中位线定理的应用,利用其进行等式转换和平行四边形的判定,即可得解;
(2)此题主要考查菱形的判定,熟练掌握,即可解题;
(3)此题主要考查正方形和矩形的判定,关键是利用正方形和矩形的面积关系式,即可解题.
18、
【解析】
原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.
【详解】
原式=(x2-2xy+y2)-(x2-4y2)=x2-2xy+y2-x2+4y2=-2xy+5y2,
方程组,
①+②得:3x=-3,即x=-1,
把x=-1代入①得:y=,
则原式=.
此题考查了代数式求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
解:如图,延长CF交AB于点G,
∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,
∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.
又∵点D是BC中点,∴DF是△CBG的中位线.
∴DF=BG=(AB﹣AG)=(AB﹣AC)=.
故答案为:.
20、-1
【解析】
方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.
【详解】
由图知:直线y=kx+b与x轴交于点(-1,0),
即当x=-1时,y=kx+b=0;
因此关于x的方程kx+b=0的解为:x=-1.
故答案为:-1
本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标解答.
21、
【解析】
根据新定义列出不等式即可求解.
【详解】
依题意得-3x+5≤11
解得
故答案为:.
此题主要考查列不等式,解题的关键是根据题意列出不等式进行求解.
22、
【解析】
根据矩形的对角线互相平分且相等可得OA=OC,然后由勾股定理列出方程求解得出BC的长和AC的长,然后根据矩形的对角线互相平分可得AO的长。
【详解】
解:如图,
在矩形ABCD中,OA=OC,
∵∠AOB=60°,∠ABC=90°
∴∠BAC=30°
∴AC=2BC
设BC=x,则AC=2x
∴
解得x=,则AC=2x=2
∴AO==.
本题考查了矩形的对角线互相平分且相等的性质和含30°的直角三角形的性质,以及勾股定理的应用,是基础题。
23、1
【解析】
D、E是AC和BC的中点,则DE是△ABC的中位线,则依据三角形的中位线定理即可求解.
【详解】
解:∵D,E分别是AC,BC的中点,
∴AB=2DE=1m.
故答案为:1.
本题考查了三角形的中位线定理,正确理解定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、2.4元/米
【解析】
利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.
【详解】
解:设去年用水的价格每立方米元,则今年用水价格为每立方米元
由题意列方程得:
解得
经检验,是原方程的解
(元/立方米)
答:今年居民用水的价格为每立方米元.
此题主要考查了分式方程的应用,正确表示出用水量是解题关键.
25、(1),;(2).
【解析】
(1)把A点坐标代入反比例函数的解析式,即可求出反比例函数的解析式,再求出B点坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解,即可得出一次函数的解析式;
(2)由面积的和差关系可求解.
【详解】
(1)∵点A(﹣3,2)在反比例函数y(x<0)的图象上,∴m=﹣3×2=﹣6,∴反比例函数解析式为:y.
∵点B(n,4)在反比例函数y(x<0)的图象,∴n,∴点B(,4).
∵点A,点B在一次函数y=kx+b的图象上,∴,解得:,∴一次函数解析式为:yx+6;
(2)设一次函数与x轴交于点D.在yx+6中,令y=0,解得:x=-4.1.
∵C(-1,0),∴CD=3.1,∴S△ABC = S△DBC-S△ADC==.
本题考查了一次函数和反比例函数的交点问题的应用,三角形的面积,用待定系数法求函数的图象,主要考查学生的计算能力,题目比较好,难度适中.
26、m=﹣1.
【解析】
利用待定系数法即可解决问题;
【详解】
解:设一次函数的解析式为y=kx+b,
则有,
解得,
∴一次函数的解析式为y=2x﹣3,
当x=﹣1时,m=﹣1.
本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
分组/分
频数
频率
50≤x<60
6
0.12
60≤x<70
a
0.28
70≤x<80
16
0.32
80≤x<90
10
0.20
90≤x≤100
c
b
合计
50
1.00
x
…
﹣1
1
2
…
y
…
m
﹣1
1
…
相关试卷
这是一份重庆市铜梁区2024-2025学年九年级数学第一学期开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市六校2025届数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市北岸区2024年九年级数学第一学期开学经典模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。