重庆市綦江中学2024-2025学年数学九上开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
A.1,2,3B.4,6,8C.6,8,10D.13,14,15
2、(4分)点关于x轴对称的点的坐标是
A.B.C.D.
3、(4分)方程x2﹣9=0的解是( )
A.x=3B.x=9C.x=±3D.x=±9
4、(4分)在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是( )
A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°
5、(4分)如图,正比例函数和一次函数的图像相交于点.当时,则( )
A.B.C.D.
6、(4分)一次函数y=3x-2的图象不经过( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、(4分)如图,点M(xM,yM)、N(xN,yN)都在函数图象上,当0<xM<xN时,( )
A.yM
8、(4分)如果中不含的一次项,则( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为__.
10、(4分)如图,折线A﹣B﹣C是我市区出租车所收费用y(元)与出租车行驶路程x(km)之间的函数关系图象,某人支付车费15.6元,则出租车走了______km.
11、(4分)若为二次根式,则的取值范围是__________
12、(4分)如图,四边形是正方形,延长到,使,则__________°.
13、(4分)如图,在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ADP为等腰三角形时,点P的坐标为_______________________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:如图,正方形中,是边上一点,,,垂足分别是点、.
(1)求证:;
(2)连接,若,,求的长.
15、(8分)如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.
16、(8分)直线是同一平面内的一组平行线.
(1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;
(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.
①求证:;
②设正方形的面积为,求证.
17、(10分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.
小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°.
小明说根据小东所得的数据可以求出CD的长度.
你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.
18、(10分)求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为_____________.
20、(4分)直线y=3x﹣1向上平移4个单位得到的直线的解析式为:_____.
21、(4分)已知,,,,五个数据的方差是.那么,,,,五个数据的方差是______.
22、(4分)已知直线经过点,则直线的图象不经过第__________象限.
23、(4分)将2019个边长都为的正方形按如图所示的方法摆放,点,,分别是正方形对角线的交点,则2019个正方形重叠形成的重叠部分的面积和为__.
二、解答题(本大题共3个小题,共30分)
24、(8分)化简求值:,从-1,0, 1,2中选一个你认为合适的m值代入求值.
25、(10分)李大伯响应国家保就业保民生政策合法摆摊,他预测某品牌新开发的小玩具能够畅销,就用3000元购进了一批小玩具,上市后很快脱销,他又用8000元购进第二批小玩具,所购数量是第一批购进数量的2倍,但每个进价贵了5元.
(1)求李大伯第一次购进的小玩具有多少个?
(2)如果这两批小玩具的售价相同,且全部售完后总利润率不低于20%,那么每个小玩具售价至少是多少元?
26、(12分)如图,已知△ABE,AB、AE的垂直平分线m1、m2分别交BE于点C、D,且BC=CD=DE.
(1)求证:△ACD是等边三角形;
(2)求∠BAE的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
判断是否为直角三角形,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、12+22=5≠32,故不能组成直角三角形,错误;
B、42+62≠82,故不能组成直角三角形,错误;
C、62+82=102,故能组成直角三角形,正确;
D、132+142≠152,故不能组成直角三角形,错误.
故选:C.
考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
2、A
【解析】
根据关于x轴对称的点,横坐标相同,纵坐标互为相反数进行求解即可得.
【详解】
由平面直角坐标系中关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得:点p关于x轴的对称点的坐标是,
故选A.
本题考查了关于x轴对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
3、C
【解析】
试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.
解:移项得;x2=9,
两边直接开平方得:x=±3,
故选C.
考点:解一元二次方程-直接开平方法.
4、D
【解析】
解:∵四边形ABCD是平行四边形,∴∠D=∠B=60°.故A正确;
∵AD∥BC,∴∠A+∠B=180°,∴∠A=180°-∠B=120°,故B正确;
∵AD∥BC,∴∠C+∠D=180°,故C正确;
∵四边形ABCD是平行四边形,∴∠C=∠A=120°,故D不正确,
故选D.
5、C
【解析】
由图象可以知道,当x=3时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.
【详解】
解:由图象知,当x>3时,y1的图象在y2上方,
y2
本题考查了两条直线相交与平行,正确的识别图象是解题的关键.
6、B
【解析】
因为k=3>0,b= -2<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第一、三象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=3x-2的图象不经过第
二象限.
【详解】
对于一次函数y=3x-2,
∵k=3>0,
∴图象经过第一、三象限;
又∵b=-2<0,
∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第四象限,
∴一次函数y=3x-2的图象不经过第二象限.
故选B.
本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.
7、C
【解析】
利用图象法即可解决问题;
【详解】
解:观察图象可知:当时,
故选:C.
本题考查反比例函数图象上的点的特征,解题的关键是读懂图象信息,学会利用图象解决问题,属于中考常考题型.
8、A
【解析】
利用多项式乘多项式法则计算,根据结果不含x的一次项求出m的值即可.
【详解】
解:原式=x2+(m-5)x-5m,
由结果中不含x的一次项,得到m-5=0,
解得:m=5,
故选:A
此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
由基本作图得到,平分,故可得出四边形是菱形,由菱形的性质可知,故可得出的长,再由勾股定理即可得出的长,进而得出结论.
【详解】
解:连结,与交于点,
四边形是平行四边形,,
四边形是菱形,
,,.
,
在中,,
.
故答案为:1.
本题考查的是作图基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.
10、1
【解析】
根据函数图象中的数据可以求得BC段对应的函数解析式,然后令y=15.6求出相应的x的值,即可解答本题.
【详解】
解:设BC段对应的函数解析式为y=kx+b,
,得,
∴BC段对应的函数解析式为y=1.2x+3.6,
当y=15.6时,
15.6=1.2x+3.6,
解得,x=1,
故答案为1.
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
11、
【解析】
根据二次根式有意义的条件,被开方数大于或等于0,即可求m的取值范围.
【详解】
解:根据题意得:3-m≥0,
解得.
主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.
12、22.5
【解析】
根据正方形的性质求出∠CAB=∠ACB=45°,再根据AC=AE求出∠ACE=67.5°,由此即可求出答案.
【详解】
∵四边形ABCD是正方形,
∴∠DAB=∠DCB=90°,
∵AC是对角线,
∴∠CAB=∠ACB=45°,
∵AC=AE,
∴∠ACE=67.5°,
∴∠BCE=∠ACE-∠ACB=22.5°,
故答案为:22.5°.
此题考查正方形的性质,等腰三角形的性质,三角形的内角和性质,是一道较为基础的题型.
13、 (2,4),(8,4),(7,4),(7.5,4)
【解析】
分PD=DA,AD=PA,DP=PA三种情况讨论,再根据勾股定理求P点坐标
【详解】
当PD=DA
如图:以D为圆心AD长为半径作圆,与BD交P点,P'点,过P点作PE⊥OA于E点,过P'点作P'F⊥OA于F点,
∵四边形OABC是长方形,点A、C的坐标分别为A(10,0)、C(0,4),
∴AD=PD=5,PE=P'F=4
∴根据勾股定理得:DE=DF=
∴P(2,4),P'(8,4)
若AD=AP=5,同理可得:P(7,4)
若PD=PA,则P在AD的垂直平分线上,
∴P(7.5,4)
故答案为:(2,4),(8,4),(7,4),(7.5,4)
本题考查了等腰三角形的性质,勾股定理,利用分类思想解决问题是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)详见解析;(2)
【解析】
(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠BAE=∠ADF,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;
(2)利用全等三角形的性质和勾股定理解答即可.
【详解】
证明:(1)四边形为正方形,
,,
,,
,
,,
,
在和中
,
,
,
;
(2),
,,
,,
,
,
.
故答案为:(1)详见解析;(2).
本题考查三角形全等的判定与性质和正方形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
15、(1)详见解析
(2)详见解析
(3)1
【解析】
(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可.
(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证.
(3)根据(2)的结论解答:与(2)同理可得:∠DPE=∠ABC=1°.
【详解】
解:(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
∵在△BCP和△DCP中,,
∴△BCP≌△DCP(SAS).
(2)证明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP.
∵PE=PB,∴∠CBP=∠E.∴∠CDP=∠E.
∵∠1=∠2(对顶角相等),
∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,
即∠DPE=∠DCE.
∵AB∥CD,
∴∠DCE=∠ABC.
∴∠DPE=∠ABC.
(3)解:在菱形ABCD中,BC=DC,∠BCP=∠DCP,
在△BCP和△DCP中,
∴△BCP≌△DCP(SAS),
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∴∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC=1°,
故答案为:1.
16、(1)9或5;(2)①见解析,②见解析
【解析】
(1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;
②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;
(2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;
②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.
【详解】
解:(1)①如图,当点分别在上时,面积为:;
②如图,当点分别在上时,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∵∠CBF+∠BCF=90°,
∴∠ABE=∠BCF,
在△ABE和△BCF中
,
∴△ABE≌△BCF(AAS),
∴AE=BF=2,
∴AB=,
∴正方形ABCD的面积=AB2=5;
综上所述,正方形ABCD的面积为9或5;
(2)①证明:过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如图所示:则EF⊥l4,
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∴∠ABE+∠CBF=180°-90°=90°,
∵∠CBF+∠BCF=90°,
∴∠ABE=∠BCF,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(AAS),
∴AE=BF,
同理△CDM≌△BCF(AAS),
∴△ABE≌△CDM(AAS),
∴BE=DM,
即h1=h2.
②解:由①得:AE=BF=h2+h2=h2+h1,
∵正方形ABCD的面积:S=AB2=AE2+BE2,
∴S=(h2+h1)2+h12=2h12+2h1h2+h3.
本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.
17、同意,CD=13 m.
【解析】
直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.
【详解】
同意
连接BD,如图
∵AB=AD=5(m),∠A=60°
∴△ABD是等边三角形
∴BD=AB=5(m),∠ABD=60°
∴∠ABC=150°,
∴∠CBD=∠ABC-∠ABD=150°-60°=90°
在Rt△CBD中,BD=5(m),BC=12(m),
∴(m)
答:CD的长度为13m.
此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD是等边三角形是解题关键.
18、见解析.
【解析】
先根据题意画出图形,写出已知,求证,然后通过平行线的性质得出∠1=∠2,再利用SAS证明△ABC≌△CDA,则有∠3=∠4,进一步得出AD∥BC,最后利用两组对边分别平行的四边形为平行四边形即可证明.
【详解】
已知:如图,在四边形ABCD中,AB∥CD,AB=CD.
求证:四边形ABCD是平行四边形.
证明:连接AC,如图所示:
∵AB∥CD,
∴∠1=∠2,
在△ABC和△CDA中,
,
∴△ABC≌△CDA(SAS),
∴∠3=∠4,
∴AD∥BC,
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).
本题主要考查平行四边形的判定,全等三角形的判定及性质,平行线的判定及性质,掌握全等三角形和平行线的判定及性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
首先求出AB的长,进而得出EO的长,再利用锐角三角函数关系求出E点横纵坐标即可.
解:如图所示,过E作EM⊥AC,
已知四边形ABCD是菱形,且周长为16,∠BAD=60°,根据菱形的性质可得AB=CD-BC=AD=4,AC⊥DB,∠BAO=∠BAD=30°,又因E是AB的中点,根据直角三角形中,斜边的中线等于斜边的一半可得EO=EA=EB=AB=2,根据等腰三角形的性质可得∠BAO=∠EOA=30°,由直角三角形中,30°的锐角所对的直角边等于斜边的一半可得EM=OE=1,在Rt△OME中,由勾股定理可得OM=,所以点E的坐标为(,1),
故选B.
“点睛”此题主要考查了菱形的性质以及锐角三角函数关系应用,根据已知得出EO的长以及∠EOA=∠EAO=30°是解题的关键.
20、y=1x+1.
【解析】
根据平移k不变,b值加减即可得出答案.
【详解】
y=1x-1向上平移4个单位则:
y=1x-1+4=1x+1,
故答案为:y=1x+1.
本题考查图形的平移变换和函数解析式之间的关系,平移后解析式有这样一个规律“左加右减,上加下减”.
21、1
【解析】
方差是用来衡量一组数据波动大小的量,每个数都加1所以波动不会变,方差不变.
【详解】
由题意知,设原数据的平均数为 ,新数据的每一个数都加了1,则平均数变为+1,
则原来的方差S11=[(x1-)1+(x1-)1+…+(x5-)1]=1,
现在的方差S11=[(x1+1--1)1+(x1+1--1)1+…+(x5+1--1)1]
=[(x1-)1+(x1-)1+…+(x5-)1]=1,
所以方差不变.
故答案为1.
本题考查了方差,注意:当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.
22、四
【解析】
根据题意求出b,再求出直线即可.
【详解】
∵直线经过点,
∴b=3
∴
∴不经过第四象限.
本题考查的是一次函数,熟练掌握一次函数的图像是解题的关键.
23、
【解析】
过正方形ABCD的中心O作OM⊥CD于M,作ON⊥BC于N,则易证△OEM≌△OFN,根据已知可求得一个阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和,即可得出结果.
【详解】
解:如图,过正方形的中心作于,作于,
则,,且,
,
则四边形的面积就等于正方形的面积,
则的面积是,
得阴影部分面积等于正方形面积的,即是,
则2019个正方形重叠形成的重叠部分的面积和
故答案为:
本题考查了正方形的性质、全等三角形的判定与性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.
二、解答题(本大题共3个小题,共30分)
24、,
【解析】
根据分式的混合运算法则运算即可,注意m的值只能取1.
【详解】
解:原式=
=
=
把m=1代入得,原式=.
本题考查了分式的化简求值问题,解题的关键是掌握分式的运算法则.
25、(1)200个;(2)至少是22元
【解析】
(1)设李大伯第一次购进的小玩具有x个,则第二次购进的小玩具有2x个,根据单价=总价÷数量结合第二次购进的单价比第一次贵5元,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设每个小玩具售价是y元,根据利润=销售收入-成本结合总利润率不低于20%,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.
【详解】
解:(1)设李大伯第一次购进的小玩具有x个,由题意得:
,
解这个方程,得.
经检验,是所列方程的根.
答:李大伯第一次购进的小玩具有200个.
(2)设每个小玩具售价为元,由题意得:
,
解这个不等式,得,
答:每个小玩具的售价至少是22元.
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.
26、(1)见解析;(2)120°
【解析】
(1)根据线段垂直平分线性质得AC=BC,AD=DE,证AC=CD=AD可得;(2)根据等边三角形性质得∠CAD=∠ACD=∠ADC=60°,根据等腰三角形性质得∠ABC=∠BAC=∠ACD=30°,∠EAD=∠DEA=∠ADC=30°,故∠BAE=∠BAC+∠CAD+∠EAD.
【详解】
证明:(1)∵AB、AE边上的垂直平分线m1、m2交BE分别为点C、D,
∴AC=BC,AD=DE,
∴∠B=∠BAC,∠E=∠EAD
∵BC=CD=DE,
∴AC=CD=AD,
∴△ACD是等边三角形.
(2)∵△ACD是等边三角形,
∴∠CAD=∠ACD=∠ADC=60°,
∵AC=BC,AD=DE,
∴∠ABC=∠BAC=∠ACD=30°,∠EAD=∠DEA=∠ADC=30°
∴∠BAE=∠BAC+∠CAD+∠EAD=120°.
考核知识点:等边三角形的判定和性质.理解等边三角形的判定和性质是关键.
题号
一
二
三
四
五
总分
得分
批阅人
重庆市万州国本中学2024-2025学年数学九上开学检测模拟试题【含答案】: 这是一份重庆市万州国本中学2024-2025学年数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市綦江中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】: 这是一份重庆市綦江中学2024-2025学年数学九年级第一学期开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市合川区太和中学2024-2025学年九上数学开学联考模拟试题【含答案】: 这是一份重庆市合川区太和中学2024-2025学年九上数学开学联考模拟试题【含答案】,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。