终身会员
搜索
    上传资料 赚现金

    重庆市杨家坪中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】

    立即下载
    加入资料篮
    重庆市杨家坪中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】第1页
    重庆市杨家坪中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】第2页
    重庆市杨家坪中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市杨家坪中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】

    展开

    这是一份重庆市杨家坪中学2024年九年级数学第一学期开学复习检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列运算结果正确的是( )
    A.=﹣3B.(﹣)2=2C.÷=2D.=±4
    2、(4分)如图所示是根据某班级名同学一周的体育锻炼情况绘制的统计图,由图像可知该班同学一周参加体育锻炼时间的中位数,众数分别是( )
    A.,
    B.,
    C.,
    D.,
    3、(4分)一元二次方程配方后可变形为( )
    A.B.C.D.
    4、(4分)下面是某八年级(2)班第1组女生的体重(单位:kg):35,36,42,42,68,40,38,这7个数据的中位数是( )
    A.68B.43C.42D.40
    5、(4分)若式子在实数范围内有意义,则x的取值范围是
    A.x≥3B.x≤3C.x>3D.x<3
    6、(4分)如图,在正方形 ABCD 中,BD=2,∠DCE 是正方形 ABCD 的外角,P 是∠DCE 的角平分线 CF 上任意一点,则△PBD 的面积等于 ( )
    A.1B.1.5C.2D.2.5
    7、(4分)如图四边形是菱形,顶点在轴上,,点在第一象限,且菱形的面积为,坐标为,则顶点的坐标为( )
    A.B.C.D.
    8、(4分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )
    A.3B.C.5D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,将矩形沿折叠,使点落在边上的点处,点落在点处,已知,连接,则__________.
    10、(4分)已知一次函数y=(m﹣1)x﹣m+2的图象与y轴相交于y轴的正半轴上,则m的取值范围是_____.
    11、(4分)如图,直线 y=﹣2x+2 与 x 轴、y 轴分别交于 A、B 两点,把△AOB 绕点 A 顺时针旋转 90°后得 到△AO′B′,则直线 AB′的函数解析式是_____.
    12、(4分)如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是_____.
    13、(4分)当m=____时,关于x的分式方程无解.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠EAC的平分线.
    15、(8分)如图,直线y1=2x-2的图像与y轴交于点A,直线y2=-2x+6的图像与y轴交于点B,两者相交于点C.
    (1)方程组的解是______;
    (2)当y1>0与y2>0同时成立时,x的取值范围为_____;
    (3)求△ABC的面积;
    (4)在直线y1=2x-2的图像上存在异于点C的另一点P,使得△ABC与△ABP的面积相等,请求出点P的坐标.
    16、(8分)化简:.
    17、(10分)(1)如图,若图中小正方形的边长为1,则△ABC的面积为______.
    (2)反思(1)的解题过程,解决下面问题:若,,(其中a,b均为正数)是一个三角形的三条边长,求此三角形的面积.
    18、(10分)如图:在▱ABCD中,E、F分别为对角线BD上的点,且BE=DF,判断四边形AECF的形状,并说明理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)若+( x-y+3)2=0,则(x+y)2018=__________.
    20、(4分)某汽车在某一直线道路上行驶,该车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系如图所示(折线ABCDE).
    根据图中提供的信息,给出下列四种说法:
    ①汽车共行驶了120千米;
    ②汽车在行驶途中停留了0.5小时;
    ③汽车在行驶过程中的平均速度为千米/小时;
    ④汽车自出发后3小时至4.5小时之间行驶的速度不变.
    其中说法正确的序号分别是_____(请写出所有的).
    21、(4分)在一只不透明的袋子中装有2个红球、3个绿球和5个白球,这些球除颜色外都相同,摇匀后,从袋子中任意摸出1个球,摸出白球可能性_________摸出红球可能性.(填“等于”、“小于”或“大于”)
    22、(4分)如图,已知直线、相交于点,平分,如果,那么__________度.
    23、(4分)已知圆锥的侧面积为6兀,侧面展开图的圆心角为60º,则该圆锥的母线长是________。
    二、解答题(本大题共3个小题,共30分)
    24、(8分)因式分解:
    (1)a(x﹣y)﹣b(y﹣x)2
    (2)2x3﹣8x2+8x.
    25、(10分)如图,矩形中,、的平分线、分别交边、于点、。求证;四边形是平行四边形。
    26、(12分)如图,平行四边形中,点是与的交点,过点的直线与,的延长线分别交于点,.
    (1)求证:;
    (2)连接,,求证:四边形是平行四边形.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    根据平方根和算术平方根的知识点进行解答得到答案.
    【详解】
    A. ,错误;
    B. (﹣)2=2,正确;
    C. ,错误;
    D. ,错误;
    故选B.
    本题主要考查二次根式的性质与化简,仔细检查是关键.
    2、B
    【解析】
    根据中位数、众数的概念分别求解即可.
    【详解】
    将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;
    众数是一组数据中出现次数最多的数,即8;
    故选:B
    考查了中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
    3、A
    【解析】
    把常数项移到方程右边,再把方程两边加上16,然后把方程作边写成完全平方形式即可
    【详解】
    x−8x=2,
    x−8x+16=18,
    (x−4) =18.
    故选:A
    此题考查一元二次方程-配方法,掌握运算法则是解题关键
    4、D
    【解析】
    把这组数据按从小到大的顺序排列,然后按照中位数的定义求解.
    【详解】
    解:这组数据按从小到大的顺序排列为:35,36,38,1,42,42,68,
    则中位数为:1.
    故选D.
    本题考查了中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
    5、A
    【解析】
    分析:根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
    故选A.
    6、A
    【解析】
    由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.
    解:△PBD的面积等于 ×2×1=1.故选A.
    “点睛”考查了三角形面积公式以及代入数值求解的能力,注意平行线间三角形同底等高的情况.
    7、C
    【解析】
    过点C作x轴的垂线,垂足为E,由面积可求得CE的长,在Rt△BCE中可求得BE的长,可求得AE,结合A点坐标可求得AO,可求出OE,可求得C点坐标.
    【详解】
    如图,过点C作x轴的垂线,垂足为E,
    ∵S菱形ABCD=20,
    ∴AB⋅CE=20,即5CE=20,
    ∴CE=4,
    在Rt△BCE中,BC=AB=5,CE=4,
    ∴BE=3,
    ∴AE=AB+BE=5+3=8.
    又∵A(−2,0),
    ∴OA=2,
    ∴OE=AE−OA=8−2=6,
    ∴C(6,4),
    故选C.
    此题考查菱形的性质,坐标与图形性质,解题关键在于作辅助线
    8、C
    【解析】
    将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,
    ∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=11,
    ∴得出S1=8y+x,S2=4y+x,S3=x,
    ∴S1+S2+S3=3x+12y=11,即3x+12y=11,x+4y=1,
    所以S2=x+4y=1,
    故答案为1.
    点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S1,S2,S3,再利用S1+S2+S3=11求解是解决问题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、75°
    【解析】
    【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.
    【详解】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,
    ∴∠EBG=∠EGB,
    ∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,
    又∵AD∥BC,
    ∴∠AGB=∠GBC,
    ∴∠AGB=∠BGH,
    ∵∠DGH=30°,
    ∴∠AGH=150°,
    ∴∠AGB=∠AGH=75°,
    故答案为:75°.
    【点睛】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    10、m<2且m≠1
    【解析】
    根据一次函数图象与系数的关系得到m-1≠0,-m+2>0,然后求出两个不等式的公共部分即可.
    【详解】
    解:根据题意得m-1≠0,-m+2>0,
    解得m<2且m≠1.
    故答案为m<2且m≠1.
    本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).
    11、y=0.5x−0.5
    【解析】
    令x=0,求得点B的坐标,令y=0,求得点A的坐标,由旋转的性质可知:AO′=AO,O′B′=OB,从而可求得点B′的坐标.
    【详解】
    令x=0得y=2,则OB=2,令y=0得,x=1,则OA=1,
    由旋转的性质可知:O′A=1,O′B′=2.
    则点B′(3,1).
    设直线AB′的函数解析式为y=kx+b,
    把(1,0)(3,1)代入解析式,可得 ,
    解得: ,
    所以解析式为:y=0.5x−0.5;
    此题考查一次函数图象与几何变换,解题关键在于求出A,B的坐标.
    12、1.
    【解析】
    利用平移的性质得到AE=CF,AE∥CF,BE=DF,BE∥DF,则可判断四边形AEFC和四边形BEFD都为平行四边形,然后根据平行四边形的面积公式,利用平移过程中扫过的面积=S▱AEFC+S▱BEFD进行计算.
    【详解】
    ∵平移折线AEB,得到折线CFD,
    ∴AE=CF,AE∥CF,BE=DF,BE∥DF,
    ∴四边形AEFC和四边形BEFD都为平行四边形,
    ∴平移过程中扫过的面积=S▱AEFC+S▱BEFD=1×3+1×3=1.
    故答案为:1.
    此题考查平移的性质:对应边平行(或在同一直线上)且相等,平行四边形的判定定理.
    13、-6
    【解析】
    把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.
    三、解答题(本大题共5个小题,共48分)
    14、见解析
    【解析】
    首先证明Rt△BDE≌Rt△CDF,可得DE=DF,再根据到角的两边的距离相等的点在角的平分线上可得AD是∠EAC的平分线.
    【详解】
    证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,
    ∴∠BED=∠CFD=90°
    在Rt△BDE和Rt△CDF中,,
    ∴Rt△BDE≌Rt△CDF(HL),
    ∴DE=DF,
    ∵DE⊥AB的延长线于点E,DF⊥AC于点F,
    ∴AD是∠BAC的平分线.
    此题主要考查了角平分线的判定,关键是掌握到角的两边的距离相等的点在角的平分线上.
    15、 (1) ;(2) 1<x<3;(3)8;(4) P(-2,-6)
    【解析】
    (1)根据图像可知,两条直线的交点即为方程组的解;(2)找出两条直线的图像在x轴上方的公共部分的x的取值范围即可;(3)令x=0,求出y1与y2的值,即可得A、B两点的坐标,进而可得AB的长度,根据C点坐标为(2,2),可得△ABC的高,即可求出面积;(4)令P(x0,2x0-2),根据三角形面积公式可得x0=±2,由点P异于点C可得x0=-2,代入y1=2x-2即可的P点坐标.
    【详解】
    (1)由图像可知直线y1=2x-2的图像与直线y2=-2x+6的交点坐标为(2,2)
    ∴方程组的解集为,
    (2)根据图像可知:当y1>0与y2>0同时成立时,x的取值范围为1<x<3.
    (3)∵令x=0,则y1=-2,y2=6,
    ∴A(0,-2),B(0,6).
    ∴AB=8.
    ∴S△ABC=×8×2=8.
    (4)令P(x0,2x0-2),则S△ABP=×8×|x0|=8,
    ∴x0=±2.
    ∵点P异于点C,
    ∴x0=-2,2x0-2=-6.
    ∴P(-2,-6).
    此题考查了一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,三角形面积,以及两一次函数的交点, 熟练掌握一次函数图像的特征是解题关键.
    16、
    【解析】
    先对原式中能因式分解的分子和分母进行因式分解,然后再对括号内进行运算,最后将除变为乘进行运算即可.
    【详解】
    解:原式=



    本题考查了分式的四则混合运算.其关键在于:①:先对能因式分解的分子和分母因式分解;②是灵活应用除以一个数就等于乘以它的倒数.
    17、(1)3.5;(2)的面积为:.
    【解析】
    (1)根据图形可知:△ABC的面积等于以3为边长的正方形面积与三个直角三角洲面积之差,代入数据即可得出结论;
    (2)构造以5a为长、2b为宽的矩形,利用(1)的面积的求法,代入数据即可得出结论.
    【详解】
    解:(1)S△ABC=3×3-×1×2×2×3×1×3=3.5,
    故答案为:3.5;
    (2)构造如图的矩形:
    设每个单位矩形的长为,宽为,则:
    ,,,
    则的面积等于大矩形面积与三个直角三角形面积的差,
    故的面积为:.
    本题考查勾股定理的应用以及三角形的面积,解题的关键是:(1)利用分割图形法求三角形面积;(2)构建矩形.本题属于基础题,难度不大,解决该题型题目时,通过构建矩形,利用分割图形法求不规则的图形的面积是关键.
    18、证明见解析
    【解析】
    分析:
    如下图,连接AC,由已知条件易得:OA=OC、OB=OD,结合BE=DF可得OE=OF,由此可得四边形AECF是平行四边形.
    详解:
    连接AC,与BD相交于O,如图所示:
    ∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵BE=DF,
    ∴OE=OF,
    ∴AC与EF互相平分,
    ∴四边形AECF为平行四边形.
    点睛:熟记:“平行四边形的对角线互相平分和对角线互相平分是四边形是平行四边形”是解答本题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    分析:根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x、y的值,计算即可.
    详解:由题意得:x+2=0,x﹣y+3=0,解得:x=﹣2,y=1,则(x+y)2018=(-2+1)2018=1.
    故答案为:1.
    点睛:本题考查了非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
    20、②④
    【解析】
    根据题意和函数图象中的数据可以判断各个小题是否正确,从而可以解答本题.
    【详解】
    解:由图象可知,
    汽车共行驶了:120×2=240千米,故①错误,
    汽车在行驶图中停留了2﹣1.5=0.5(小时),故②正确,
    车在行驶过程中的平均速度为:千米/小时,故③错误,
    汽车自出发后3小时至4.5小时之间行驶的速度不变,故④正确,
    故答案为:②④.
    本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    21、大于
    【解析】
    分别求出摸到白球与摸到红球的概率,比较这两个概率即可得答案.
    【详解】
    ∵共有球:2+3+5=10个,
    ∴P白球==,P红球==,
    ∵>,
    ∴摸出白球可能性大于摸出红球可能性.
    故答案为:大于
    本题考查概率的求法,概率=所求情况数与总情况数之比;熟练掌握概率公式是解题关键.
    22、1
    【解析】
    先根据角平分线的定义,求出∠BOC的度数,再根据邻补角的和等于11°求解即可.
    【详解】
    解:∵平分,,
    ∴,
    ∴,
    故答案为:1.
    本题考查了角平分线的定义以及邻补角的性质,属于基础题.
    23、6
    【解析】
    根据扇形的面积计算公式:,把相应数值代入即可.
    【详解】
    解:设母线长为r,圆锥的侧面展开后是扇形,侧面积=6π,
    ∴r=6cm,
    故答案是6cm.
    本题考查了圆锥的计算,利用了扇形的面积公式求解,解题的关键是牢记圆锥的有关公式,难度不大.
    二、解答题(本大题共3个小题,共30分)
    24、(1)(x﹣y)[a﹣b(x﹣y)];(1)1x(x﹣1)1.
    【解析】
    (1)提取公因式x-y,在医院公因式法进行计算即可
    (1)先提取公因式1x,再对余下的多项式利用完全平方公式继续分解
    【详解】
    (1)原式=a(x-y)-b(y-x) =(x﹣y)[a﹣b(x﹣y)];
    (1)原式=1x(x -4x+4)=1x(x﹣1)1.
    此题考查提取公因式法与公式法的综合运用,解题关键在于提取公因式
    25、见解析
    【解析】
    由矩形的性质可得AB∥CD,BC∥AD,由平行线的性质和角平分线的性质可得∠EBD=∠FDB,可证BE∥DF,且BC∥DE,可得四边形BEDF是平行四边形.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AB∥CD,BC∥AD,
    ∴∠ABD=∠BDC,
    ∵BE平分∠ABD,DF平分∠BDC,
    ∴∠EBD=∠ABD,∠FDB=∠BDC,
    ∴∠EBD=∠FDB,
    ∴BE∥DF,且BC∥DE,
    ∴四边形BEDF是平行四边形.
    本题考查了矩形的性质,平行四边形的判定,角平分线的性质,熟练运用矩形的性质是本题的关键.
    26、 (1)证明见解析;(2)证明见解析.
    【解析】
    (1)根据平行四边形的性质和全等三角形的证明方法证明即可;
    (2)请连接、,由,得到,又,所以四边形是平行四边形.
    【详解】
    (1)四边形是平行四边形,
    ,.

    在与中,


    (2)如图,连接、,
    由(1)可知,


    四边形是平行四边形.
    本题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.
    题号





    总分
    得分
    批阅人

    相关试卷

    重庆市杨家坪中学2025届九上数学开学复习检测模拟试题【含答案】:

    这是一份重庆市杨家坪中学2025届九上数学开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    重庆市巫溪中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】:

    这是一份重庆市巫溪中学2024年数学九年级第一学期开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    重庆市彭水第一中学2025届数学九年级第一学期开学检测模拟试题【含答案】:

    这是一份重庆市彭水第一中学2025届数学九年级第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map