2024-2025学年四川省成都市树德协进中学高一新生入学分班质量检测数学试题【含答案】
展开
这是一份2024-2025学年四川省成都市树德协进中学高一新生入学分班质量检测数学试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知:菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为【 】
A.6cm B.4cm C.3cm D.2cm
2、(4分)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②m+n=3;③抛物线与x轴的另一个交点是(﹣1,0);④方程ax2+bx+c=3有两个相等的实数根;⑤当1≤x≤4时,有y2<y1,其中正确的是( )
A.①②③B.①②④C.①②⑤D.②④⑤
3、(4分)如图,矩形的对角线与数轴重合(点在正半轴上),,,若点在数轴上表示的数是-1,则对角线的交点在数轴上表示的数为( )
A.5.5B.5C.6D.6.5
4、(4分)如图,已知AB=10,点C,D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是( ).
A.6B.5C.4D.3.
5、(4分)已知三条线段长a、b、c满足a2=c2﹣b2,则这三条线段首尾顺次相接组成的三角形的形状是( )
A.等腰三角形B.等边三角形
C.直角三角形D.等腰直角三角形
6、(4分)下列二次根式中,化简后能与合并的是
A.B.C.D.
7、(4分)八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是( )
A.列表法B.图象法
C.解析式法D.以上三种方法均可
8、(4分)下列说法中,正确的是( )
A.对角线互相平分的四边形一定是平行四边形
B.对角线相等的四边形一定是矩形
C.对角线互相垂直的四边形一定是菱形
D.对角线相等的四边形一定是正方形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)化简的结果是_______.
10、(4分)如图,在▱ABCD中,AB=10,BC=6,AC⊥BC,则▱ABCD的面积为_____.
11、(4分)y=(2m﹣1)x3m﹣2+3是一次函数,则m的值是_____.
12、(4分)正八边形的一个内角的度数是 度.
13、(4分)如图,长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,AC的长为半径作弧交数轴于点M,则点M表示的数为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形网格上有和.(每一个小正方形的边长为)
求证:;
请你在正方形网格中画一个以点为位似中心的三角形并将放大倍.
15、(8分)如图,在四边形中,,,,为的中点,连接.
(1)求证:四边形是菱形;
(2)连接,若平分,,求的长.
16、(8分)□ABCD中,AC=6,BD=10,动点P从B出发以每秒1个单位的速度沿射线BD匀速运动,动点Q从D出发以相同速度沿射线DB匀速运动,设运动时间为t秒.
(1)当t =2时,证明以A、P、C、Q为顶点的四边形是平行四边形.
(2)当以A、P、C、Q为顶点的四边形为矩形时,直接写出t的值.
(3)设PQ=y,直接写出y与t的函数关系式.
17、(10分)如图是一个三级台阶,它的第一级的长、宽、高分别为20dm,3dm,2dm,点和点是这个台阶两个相对的端点,点处有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点的最短路程是多少?
18、(10分)如图,□ABCD中,在对角线BD上取E、F两点,使BE=DF,连AE,CF,过点E作EN⊥FC交FC于点N,过点F作FM⊥AE交AE于点M;
(1)求证:△ABE≌△CDF;
(2)判断四边形ENFM的形状,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线与轴、轴分别交于点和点,点,分别为线段,的中点,点为上一动点,值最小时,点的坐标为______.
20、(4分)将二次函数化成的形式,则__________.
21、(4分)已知函数,当时,函数值的取值范围是_____________
22、(4分)因式分解:_________.
23、(4分)如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并把解集在数轴上表示出来.
25、(10分)计算:
(1)
(2)
(3)若与|x-y-3|互为相反数,则x+y的值为多少?
26、(12分)某商厦进货员预测一种应季衬衫能畅销市场,就用万元购进这种衬衫,面市后果然供不应求.商厦又用万元购进第二批这种衬衫,所购数量是第一批进量的倍,但单价贵了元.商厦销售这种衬衫时每件定价元,最后剩下件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】∵四边形ABCD是菱形,∴OB=OD,CD=AD=6cm,
∵OE∥DC,∴OE是△BCD的中位线。∴OE=CD=3cm。故选C。
2、B
【解析】
①利用对称轴x=1判定;
②把A(1,3)代入直线y2=mx+n即可判定;
③根据对称性判断;
④方程ax2+bx+c=3的根,就是图象上当y=3是所对应的x的值.
⑤由图象得出,当1≤x≤4时,有y2≤y1;
【详解】
由抛物线对称轴为直线x=﹣,从而b=﹣2a,则2a+b=0故①正确;
直线y2=mx+n过点A,把A(1,3)代入得m+n=3,故②正确;
由抛物线对称性,与x轴的一个交点B(4,0),则另一个交点坐标为(2,0)故③错误;
方程ax2+bx+c=3从函数角度可以看做是y=ax2+bx+c与直线y=3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点
故方程ax2+bx+c=3有两个相等的实数根,因而④正确;
由图象可知,当1≤x≤4时,有y2≤y1 故当x=1或4时y2=y1 故⑤错误.
故选B.
本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b的值都是利用抛物线的对称轴来确定;②抛物线与x轴的交点个数确定其△的值,即b2-4ac的值:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x轴的另一交点.
3、A
【解析】
连接BD交AC于E,由矩形的性质得出∠B=90°,AE=AC,由勾股定理求出AC,得出OE,即可得出结果.
【详解】
连接BD交AC于E,如图所示:
∵四边形ABCD是矩形,
∴∠B=90°,AE=AC,
∴AC=,
∴AE=6.5,
∵点A表示的数是-1,
∴OA=1,
∴OE=AE-OA=5.5,
∴点E表示的数是5.5,
即对角线AC、BD的交点表示的数是5.5;
故选A.
本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.
4、D
【解析】
分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.
【详解】
如图,分别延长AE、BF交于点H.
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE,
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也正好为PH中点,
即在P的运动过程中,G始终为PH的中点,
所以G的运行轨迹为三角形HCD的中位线MN.
∵CD=10-2-2=6,
∴MN=1,即G的移动路径长为1.
故选D.
本题考查了等边三角形的性质,平行四边形的判定与性质,以及中位线的性质,确定出点G的运动轨迹是解答本题的关键.
5、C
【解析】
根据勾股定理的逆定理判断即可.
【详解】
∵三条线段长a、b、c满足a2=c2﹣b2,
∴a2+b2=c2,
即三角形是直角三角形,
故选C.
本题考查了勾股定理的逆定理、等腰三角形的判定、等边三角形的判定、等腰直角三角形等知识点,能熟记勾股定理的逆定理的内容是解此题的关键.
6、B
【解析】
根据二次根式的性质把各选项的二次根式化简,再根据能合并的二次根式是同类二次根式解答.
【详解】
、,不能与合并,故本选项错误;
、,能与合并,故本选项正确;
、,不能与合并,故本选项错误;
、,不能与合并,故本选项错误.
故选.
本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
7、B
【解析】
列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.
【详解】
解:护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是图象法,有利于判断体温的变化情况,
故选:B.
本题主要考查了函数的表示方法,图象法直观地反映函数值随自变量的变化而变化的规律.
8、A
【解析】
解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.
考点: 命题与定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
根据算术平方根的定义解答即可.
【详解】
=4.
故答案为:4.
本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.
10、1.
【解析】
先在Rt△ABC中利用勾股定理可得AC=2,根据平行四边形面积:底高,可求面积。
【详解】
在Rt△ABC中,AB=10,BC=6,
利用勾股定理可得AC=2.
根据平行四边形面积公式可得平行四边形ABCD面积=BC×AC=6×2=1.
故答案为1.
本题考查了平行四边形的性质及勾股定理,熟知平行四边形的面积公式是解题的关键。
11、1
【解析】
根据一次函数的定义可得
【详解】
解:∵y=(2m﹣1)x3m﹣2+3是一次函数,
∴
解得m=1.
故答案为1.
考核知识点:一次函数.理解定义是关键.
12、135
【解析】
根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数即可.
【详解】
正八边形的内角和为:(8﹣2)×180°=1080°,
每一个内角的度数为: 1080°÷8=135°,
故答案为135.
13、
【解析】
根据勾股定理,可得AC的长,根据圆的性质,可得答案.
【详解】
由题意得
故可得,
又∵点B的坐标为2
∴M点的坐标是,
故答案为:.
此题考查勾股定理,解题关键在于结合实数与数轴解决问题.
三、解答题(本大题共5个小题,共48分)
14、 (1)见解析;(2)见解析.
【解析】
(1)利用、,
,即可得出△A1B1C1∽△A2B2C2;
(2)延长C2A2到A′,使2C2A2=C2A′,得到C2的对应点A′,同法得到其余点的对应点,顺次连接即为所求图形.
【详解】
.证明:∵,,
,
∴,
∴;
解:如图所示:
此题主要考查了相似三角形的判定以及位似变换的关键是根据位似中心和位似比确定对应点的位置.
15、(1)详见解析;(2)
【解析】
(1)由,,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;
(2)可证AB=BC,由勾股定理可求出.
【详解】
(1)∵为中点,∴;
∵,∴;
∵,∴四边形是平行四边形.
∵,为的中点,∴.
∴平行四边形是菱形 .
(2)∵平分,∴;
∵,∴,
∴,∴;
在中,,,.
本题考查菱形的判定和性质、直角三角形斜边中线的性质、等腰三角形的判定,勾股定理等知识,解题的关键是熟练掌握菱形的判定方法,属于中考常考题型.
16、 (1)见解析;(2) t =2或t =8;(3) y=-2t+10(0≤t≤5时),y=2y-10(t>5时).
【解析】
分析:(1)只需要证明四边形APCQ的对角线互相平分即可证明其为平行四边形.
(2)根据矩形的性质可知四边形APCQ的对角线相等,然后分两种情况即可解答.
(3)根据(2)中的图形,分两种情况进行讨论即可.
详解:(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC=3,OB=OD=5,
当t=2时,BP=QD=2,
∴OP=OQ=3,
∴四边形APCQ是平行四边形;
(2)t =2或t =8;
理由如下:
图一:
图二:
∵四边形APCQ是矩形,
∴PQ=AC=6,
则BQ=PD=2,
第一个图中,BP=6+2=8,则此时t=8;
第二个图中,BP=2,则此时t=2.
即以A、P、C、Q为顶点的四边形为矩形时,t的值为2或8;
(3)根据(2)中的两个图形可得出:
y=-2t+10(时),
y=2y-10(时).
点睛:本题主要考查了矩形的性质和平行四边形的判定,结合题意画出图形是解答本题的关键.
17、最短路程是25dm.
【解析】
先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.
【详解】
三级台阶平面展开图为长方形,长为20dm,宽为,
则蚂蚁沿台阶面爬行到点最短路程是此长方形的对角线长.
可设蚂蚁台阶面爬行到点最短路程为.
由勾股定理,得,
解得.
因此,蚂蚁沿着台阶面爬到点的最短路程是25dm.
此题考查平面展开-最短路径问题,解题关键在于利用勾股定理进行计算.
18、(1)见解析;(2)四边形ENFM是矩形.见解析.
【解析】
(1)根据SAS即可证明;
(2)只要证明三个角是直角即可解决问题;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD
∴∠ABD=∠CDB,又∵BE=DF,
∴△ABE≌△CDF(SAS).
(2)由(1)得,∴∠AEB=∠CFD,
∴∠AED=∠CFB,
∴AE∥CF
又∵EN⊥CF,∠AEN=∠ENF=90°,
又∵FM⊥AE,∠FME=90°,
∴四边形ENFM是矩形.
本题考查平行四边形的性质、全等三角形的判定和性质、矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (-,0)
【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.
【详解】
作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.
令y=x+4中x=0,则y=4,
∴点B的坐标为(0,4);
令y=x+4中y=0,则x+4=0,解得:x=-6,
∴点A的坐标为(-6,0).
∵点C、D分别为线段AB、OB的中点,
∴点C(-3,1),点D(0,1).
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-1).
设直线CD′的解析式为y=kx+b,
∵直线CD′过点C(-3,1),D′(0,-1),
∴有,解得:,
∴直线CD′的解析式为y=-x-1.
令y=-x-1中y=0,则0=-x-1,解得:x=-,
∴点P的坐标为(-,0).
故答案为:(-,0).
本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是找出点P的位置.
20、
【解析】
利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.
【详解】
解:,
,
.
故答案为:.
本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.
21、
【解析】
依据k的值得到一次函数的增减性,然后结合自变量的取值范围,得到函数值的取值范围即可.
【详解】
∵函数y=−3x+7中,k=−3<0,
∴y随着x的增大而减小,
当x=2时,y=−3×2+7=1,
∴当x>2时,y<1,
故答案为:y<1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
22、
【解析】
利用完全平方公式分解即可.
【详解】
解:=
本题考查了公式法分解因式,能用公式法进行因式分解的式子的特点需牢记.
能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.
能用完全平方公式法进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍.
23、
【解析】
根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.
【详解】
解:如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=3,∠D=90°,
在Rt△ADE中,AE=
∵S△ABE=S矩形ABCD=3=•AE•BF,
∴BF=.
故答案为:.
本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
解不等式,得:,
解不等式,得:,
将不等式的解集表示在数轴上如下:
则不等式组的解集为,
本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.
25、(1); (2)﹣6;(3)1.
【解析】
分析:(1)先化简每个二次根式,然后合并同类二次根式即可;
(2)先算乘法、化简二次根式,去掉绝对值符号,然后合并即可;
(3)由两非负数之和为0,两非负数分别为0列出关于x与y的方程组,求出方程组的解得到x与y的值,即可求出x+y的值.
详解:(1)原式==;
(2)原式=
=
=-6;
(3)∵+|x﹣y﹣3|=0,
∴,
解得:,
则x+y=15+12=1.
点睛:本题考查了二次根式的混合运算和解二元一次方程组,以及非负数的性质.解题的关键是熟练掌握二次根式的运算法则和非负数的性质.
26、商厦共盈利元.
【解析】
根据题意找出等量关系即第二批衬衫的单价-第一批衬衫的单价=4元,列出方程,可求得两批购进衬衫的数量;再设这笔生意盈利y元,可列方程为y+80000+176000=58(1+4000-150)+80%×58×150,可求出商厦的总盈利.
【详解】
设第一批购进x件衬衫,则第二批购进了2x件,
依题意可得:,
解得x=1.
经检验x=1是方程的解,
故第一批购进衬衫1件,第二批购进了4000件.
设这笔生意盈利y元,
可列方程为:y+80000+176000=58(1+4000-150)+80%×58×150,
解得y=2.
答:在这两笔生意中,商厦共盈利2元.
本题主要考查分式方程的应用,解题的关键是找出题中的等量关系.注意:求出的结果必须检验且还要看是否符合题意题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年四川省成都市铁路中学高一新生入学分班质量检测数学试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省成都市树德中学(文庙校区)高一新生入学分班质量检测数学试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年四川省成都市树德中学(宁夏校区)高一新生入学分班质量检测数学试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。