年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    人教版高中数学选择性必修第三册8.3分类变量与列联表同步课堂导学案(含答案)

    人教版高中数学选择性必修第三册8.3分类变量与列联表同步课堂导学案(含答案)第1页
    人教版高中数学选择性必修第三册8.3分类变量与列联表同步课堂导学案(含答案)第2页
    人教版高中数学选择性必修第三册8.3分类变量与列联表同步课堂导学案(含答案)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版高中数学选择性必修第三册8.3分类变量与列联表同步课堂导学案(含答案)

    展开

    这是一份人教版高中数学选择性必修第三册8.3分类变量与列联表同步课堂导学案(含答案),共18页。学案主要包含了典例解析等内容,欢迎下载使用。
    1.通过对典型案例的探究,了解独立性检验(只要求2×2列联表)的基本思想、方法
    及初步应用.
    2.通过对数据的收集、整理和分析,增强学生的社会实践能力,培养学生分析问题、
    解决问题的能力.
    重点:了解独立性检验(只要求2×2列联表)的应用.
    难点:独立性检验(只要求2×2列联表)的基本思想、方法
    1. 分类变量
    为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.
    2. 2×2列联表
    表是关于分类变量X和Y的抽样数据的2×2列联表:最后一行的前两个数分别是事件{Y=0}和{Y=1}的频数;最后一列的前两个数分别是事件{X=0}和{X=1}的频数;中间的四个数a,b,c,d是事件{X=x,Y=y}(x, y=0,1)的频数;右下角格中的数n是样本容量。
    3.两个分类变量之间关联关系的定性分析的方法:
    (1)频率分析法:通过对样本的每个分类变量的不同类别事件发生的频率大小进行比较来分析分类变量之间是否有关联关系.如可以通过列联表中aa+b与cc+d值的大小粗略地判断分类变量x和Y之间有无关系.一般其值相差越大,分类变量有关系的可能性越大.
    (2)图形分析法:与表格相比,图形更能直观地反映出两个分类变 量间是否互相影响,常用等高堆积条形图展示列联表数据的频率特征.将列联表中的数据用高度相同的两个条形图表示出来,其中两列的数据分别对应不同的颜色,这就是等高堆积条形图.
    等高堆积条形图可以展示列联表数据的频率特征,能够直观地反映出两个分类变量间是否相互影响.
    4.独立性检验公式及定义:
    提出零假设(原假设)H0:分类变量X和Y独立,假定我们通过简单随机抽样得到了X和Y的抽样数据列联表,在列联表中,如果零假设H0成立,则应满足aa+b≈cc+d,即ad-bc≈0.因此|ad−bc|越小,说明两个分类变量之间关系越弱;|ad−bc|越大,说明两个分类变量之间关系越强.
    为了使不同样本容量的数据有统一的评判标准,基于上述分析,我们构造一个随机变量χ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).
    5.临界值的定义:
    对于任何小概率值α,可以找到相应的正实数xα,使得P(χ2≥xα)=α成立,我们称xα为α的临界值,这个临界值可作为判断χ2大小的标准,概率值α越小,临界值xα越大.
    基于小概率值α的检验规则:
    当χ2≥xα时,我们就推断H0不成立,即认为X和Y不独立,该推断犯错误的概率不超过α;
    当χ23.841,所以有 的把握判定主修统计专业与性别有关系.
    4.在500人身上试验某种血清预防感冒作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示。问:该种血清能否起到预防感冒的作用?
    5.随着工业化以及城市车辆的增加,城市的空气污染越来越严重,空气质量指数API一直居高不下,对人体的呼吸系统造成了严重的影响.现调查了某市500名居民的工作场所和呼吸系统健康情况,得到2×2列联表如下:
    (1)补全2×2列联表;
    (2)能否在犯错误的概率不超过0.05的前提下认为感染呼吸系统疾病与工作场所有关?
    (3)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机地抽取两人,求两人都有呼吸系统疾病的概率.
    参考答案:
    知识梳理
    学习过程
    问题探究
    问题1. 这是一个简单的统计问题,最直接的解答方法是,比较经常锻炼的学生在女生和男生中的比率,为了方便,我们设f0=经常锻炼的女生数女生总数, f1=经常锻炼的男生数男生总数
    那么,只要求出f0和f1的值,通过比较这两个值的大小,就可以知道女生和男生在锻炼的经常性方面是否有差异,由所给的数据,经计算得到f0=331523≈0.633, f1=473601≈0.787.
    由f1-f0 ≈ 0.787-0.633=0.154可知,男生经常锻炼的比率比女生高出15.4个百分点.
    所以该校的女生和男生在体育锻等的经常性方面有差异,而且男生更经常锻炼.
    用n表示该校全体学生构成的集合,这是我们所关心的对象的总体,考虑以n为样本空间的古典概型,并定义一对分类变量X和Y如下:对于Ω中的每一名学生,
    分别令X=0,该生为女生1,该生为男生,y=0,该生不经常锻炼1,该生经常锻炼 ,
    “性别对体育锻炼的经常性没有影响”可以描述为P(Y=1|X=0)=P(Y=1|X=1);
    “性别对体育锻炼的经常性有影响”可以描述为P(Y=1|X=0)≠P(Y=1|X=1).
    我们希望通过比较条件概率P(Y=1|X=0)和P(Y=1|X=1)回答上面的问题.按照条件本概率的直观解释,
    如果从该校女生和男生中各随机选取一名学生,那么该女生属于经常锻炼群体的概率是P(Y=1|X=0),
    而该男生属于经常锻炼群体的概率是P(Y=1|X=1).
    为了清楚起见,我们用表格整理数据
    我们用{X=0,Y=1}表示事件{X=0}和{Y=1}的积事件,用{X=1,Y=1}表示事件{X=1}和{Y=1}的积事件,根据古典概型和条件概率的计算公式,我们有
    P(Y=1|X=0)=n(X=0,Y=1)n(X=0)=331523≈0.633
    P(Y=1|X=1)=n(X=1,Y=1)n(X=1)=473601≈0.787
    由P(Y=1|X=1)>P(Y=1|X=0)
    可以作出判断,在该校的学生中,性别对体育锻炼的经常性有影响,即该校的女生和男生在体育锻炼的经常性方面存在差异,而且男生更经常锻炼。
    在实践中,由于保存原始数据的成本较高,人们经常按研究问题的需要,将数据分类统计,并做成表格加以保存,我们将下表这种形式的数据统计表称为2×2列联表(cntingency table).
    2×2列联表给出了成对分类变量数据的交叉分类频数,以右表为例,它包含了X和Y的如下信息:
    最后一行的前两个数分别是事件{Y=0}和{Y=1}中样本点的个数;
    最后一列的前两个数分别是事件{X=0}和{X=1}中样本点的个数;
    中间的四个格中的数是表格的核心部分,给出了事件{X=x,Y=y}(x,y=0,1)中样本点的个数;
    右下角格中的数是样本空间中样本点的总数。
    二、典例解析
    例1.解:用Ω表示两所学校的全体学生构成的集合.考虑以Ω为样本空间的古典概型.对于Ω中每一名学生,定义分类变量X和Y如下:X=0,该生来自甲校1,该生来自乙校,y=0,该生数学成绩不优秀1,该生数学成绩优秀 ,
    我们将所给数据整理成表(单位:人)
    表是关于分类变量X和Y的抽样数据的2×2列联表:最后一行的前两个数分别是事件(Y=0)和(Y=1)的频数;最后一列的前两个数分别是事件(X=0)和(X=1)的频数;中间的四个格中的数是事件(X=x,Y=y)(x,y=0,1)的频数;
    甲校学生中数学成绩不优秀和数学成绩优秀的频率分别为33 43 ≈0.7674和10 43 ≈ 0.2326;
    乙校学生中数学成绩不优秀和数学成绩优秀的频率分别为38 45 ≈ 0.8444和7 45 ≈ 0.1556
    我们可以用等高堆积条形图直观地展示上述计算结果,如图所示
    左边的蓝色和红色条的高度分别是甲校学生中数学成绩不优秀和数学成绩优秀的频率;右边的蓝色和红色条的高度分别是乙校学生中数学成绩不优秀和数学成绩优秀的频率,通过比较发现,两个学校学生抽样数据中数学成绩优秀的频率存在差异,甲校的频率明显高于乙校的频率,依据频率稳定于概率的原理,我们可以推断P(Y=1|X=0)>P(Y=1|X=1).
    也就是说,如果从甲校和乙校各随机选取一名学生,那么甲校学生数学成绩优秀的概率大于乙校学生数学成绩优秀的概率,因此,可以认为两校学生的数学成绩优秀率存在差异,甲校学生的数学成绩优秀率比乙校学生的高。
    问题2.有可能; “两校学生的数学成绩优秀率存在差异”这个结论是根据两个频率间存在差异推断出来的.有可能出现这种情况:在随机抽取的这个样本中,两个频率间确实存在差异,但两校学生的数学成绩优秀率实际上是没有差别的.对于随机样本而言,因为频率具有随机性,频率与概率之间存在误差,所以我们的推断可能犯错误,而且在样本容量较小时,犯错误的可能性会较大.因此,需要找到一种更为合理的推断方法,同时也希望能对出现错误推断的概率有一定的控制或估算.
    考虑以Ω为样本空间的古典概型,设X和Y为定义在Ω上,取值于{0,1}的成对分类变量,我们希望判断事件{X=1}和{Y=1}之间是否有关联。注意到{X=0}和{X=1}, {Y=0}和{Y=1}都是互对立事件,与前面的讨论类似,我们需要判断下面的假定关系H0:P(Y=1|X=0)=P(Y=1|X=1)是否成立,通常称H0为零假设或原假设(null hypthesis).
    P(Y=1|X=0)表示从{X=0}中随机选取一个样本点,该样本点属于{X=0,Y=1}的概率;
    P(Y=1|X=1)表示从{X=1}中随机选取一个样本点,该样本点属于{X=1,Y=1}的概率。
    由条件概率的定义可知,零假设H0等价于P(X=0,Y=1)P(X=0)= P(X=1,Y=1)P(X=1)
    或P(X=0,Y=1)P(X=1)=P(X=1,Y=1)P(X=0). ①
    考虑以Ω为样本空间的古典概型,设X和Y为定义在Ω上,取值于{0,1}的成对分类变量,我们希望判断事件{X=1}和{Y=1}之间是否有关联。注意到{X=0}和{X=1}, {Y=0}和{Y=1}都是互对立事件,与前面的讨论类似,我们需要判断下面的假定关系H0:P(Y=1|X=0)=P(Y=1|X=1)是否成立,通常称H0为零假设或原假设(null hypthesis).
    P(Y=1|X=0)表示从{X=0}中随机选取一个样本点,该样本点属于{X=0,Y=1}的概率;
    P(Y=1|X=1)表示从{X=1}中随机选取一个样本点,该样本点属于{X=1,Y=1}的概率。
    由条件概率的定义可知,零假设H0等价于P(X=0,Y=1)P(X=0)= P(X=1,Y=1)P(X=1)
    或P(X=0,Y=1)P(X=1)=P(X=1,Y=1)P(X=0). ①
    注意到(X=0)和(X=1)为对立事件,于是P(X=0)=1-P(X=1).
    再由概率的性质,我们有P(X=0,Y=1)=P(Y=1)-P(X=1,Y=1).
    由此推得①式等价于P(X=1)P(Y=1)=P(X=1,Y=1).
    因此,零假设H0等价于{X=1}与{Y=1}独立。
    根据已经学过的概率知识,下面的四条性质彼此等价:
    { X=0}与{Y=0}独立;{X=0}与{Y=1}独立;{X=1}与{Y=0}独立;{X=1}与{Y=1}独立。
    以上性质成立,我们就称分类变量X和Y独立,这相当于下面四个等式成立;
    P(X=0,Y=0)=P(X=0)P(Y=0); P(X=0,Y=1)=P(X=0)P(Y=1);
    P(X=1,Y=0)=P(X=1)P(Y=0); P(X=1,Y=1)=P(X=1)P(Y=1). ②
    我们可以用概率语言,将零假设改述为H0:分类变量X和Y独立.
    假定我们通过简单随机抽样得到了X和Y的抽样数据列联表,如下表所示。
    表是关于分类变量X和Y的抽样数据的2×2列联表:最后一行的前两个数分别是事件{Y=0}和{Y=1}的频数;最后一列的前两个数分别是事件{X=0}和{X=1}的频数;中间的四个数a,b,c,d是事件{X=x,Y=y}(x, y=0,1)的频数;右下角格中的数n是样本容量。
    问题3:在零假设H0成立的条件下,根据频率稳定于概率的原理,由②中的第一个等式,我们可以用概率P(X=0)和P(Y=0)对应的频率的乘积(a+b)(a+c)n2估计概率P(X=0,Y=0),而把(a+b)(a+c)n2视为事件{X=0.Y=0}发生的频数的期望值(或预期值).
    这样,该频数的观测值a和期望值(a+b)(a+c)n应该比较接近.
    综合②中的四个式子,如果零假设H0成立,下面四个量的取值都不应该太大:
    |a−(a+b)(a+c)n|, |b−(a+b)(b+d)n|, |c−(c+d)(a+c)n|, |d−(c+d)(b+d)n| ③
    反之,当这些量的取值较大时,就可以推断H0不成立。
    分别考虑③中的四个差的绝对值很困难,我们需要找到一个既合理又能够计算分布的统计量,来推断H0是否成立.
    一般来说,若频数的期望值较大,则③中相应的差的绝对值也会较大;
    而若频数的期望值较小,则③中相应的差的绝对值也会较小.
    为了合理地平衡这种影响,我们将四个差的绝对值取平方后分别除以相应的期望值再求和,得到如下的统计量:
    χ2=(a−(a+b)(a+c)n)2(a+b)(a+c)n+(b−(a+b)(b+d)n)2(a+b)(b+d)n+(c−(c+d)(a+c)n)2(c+d)(a+c)n+(d−(c+d)(b+d)n)2(c+d)(b+d)n
    该表达式可化简为:χ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d).
    统计学家建议,用随机变量χ2取值的大小作为判断零假设H0是否成立的依据,当它比较大时推断H0不成立,否则认为H0成立.
    问题4:那么,究竟χ2大到什么程度,可以推断H0不成立呢?或者说,怎样确定判断χ2大小的标准呢?
    根据小概率事件在一次试验中不大可能发生的规律, 可以通过确定一个与H0相矛盾的小概率事件来实现,在假定H0的条件下,对于有放回简单随机抽样,当样本容量n充分大时,统计学家得到了χ2的近似分布,忽略χ2的实际分布与该近似分布的误差后,对于任何小概率值α,可以找到相应的正实数xα,
    使得下面关系成立:P(χ2≥xα)=α ④
    我们称xα为α的临界值,这个临界值就可作为判断χ2大小的标准,概率值α越小,临界值xα越大,当总体很大时,抽样有、无放回对χ2的分布影响较小.因此,在应用中往往不严格要求抽样必须是有放回的.
    由④式可知,只要把概率值α取得充分小,在假设H0成立的情况下,事件χ2不大可能发生的.根据这个规律,如果该事件发生,我们就可以推断H0不成立.不过这个推断有可能犯错误,但犯错误的概率不会超过α.
    例2: 解:零假设为H0:分类变量X与Y相互独立,即两校学生的数学成绩优秀率无差异.
    因为
    所以χ2=88(33×7−10×38)271×17×43×45≈0.8373.841.
    答案:D
    3. χ2=50×(13×20-10×7)223×27×20×30≈4.844.
    答案:95%
    4. 解:设H0:感冒与是否使用该血清没有关系。
    χ2=1000258×284−242×2162474×526×500×500≈7.075
    因当H0成立时, χ2≥6.635的概率约为0.01,故有99%的把握认为该血清能起到预防感冒的作用。
    5.解:(1)列联表如下:
    所以能在犯错误的概率不超过0.05的前提下认为感染呼吸系统疾病与工作场所有关.
    (2)χ2=500×(150×100-200×50)2350×150×200×300≈3.968>3.841.
    (3)采用分层抽样从室内工作的居民中抽取6名,其中有呼吸系统疾病的抽4人,无呼吸系统疾病的抽2人,设A为“从中随机地抽取两人,两人都有呼吸系统疾病”,则
    P(A)=C42C62=25.
    X
    Y
    合计
    Y=0
    Y=1
    X=0
    a
    b
    a+b
    X=1
    c
    d
    c+d
    合计
    a+c
    b+d
    n=a+b+c+d
    X
    Y
    合计
    Y=0
    Y=1
    X=0
    a
    b
    a+b
    X=1
    c
    d
    c+d
    合计
    a+c
    b+d
    n=a+b+c+d
    α
    0.1
    0.05
    0.01
    0.005
    0.001

    2.706
    3.841
    6.635
    7.879
    10.858
    学校
    数学成绩
    合计
    不优秀(Y=0)
    优秀(Y=1)
    甲校(X=0)
    33
    10
    43
    乙校(X=1)
    38
    7
    45
    合计
    71
    17
    88
    吸烟
    肺癌
    合计
    非肺癌患者
    肺癌患者
    非吸烟者
    7775
    42
    7817
    吸烟者
    2099
    49
    2148
    合计
    9874
    91
    9965
    P(χ2≥x0)
    0.50
    0.40
    0.25
    0.15
    0.10
    0.05
    0.025
    0.010
    0.005
    0.001
    x0
    0.455
    0.708
    1.323
    2.072
    2.706
    3.841
    5.024
    6.635
    7.879
    10.828
    体育
    文娱
    总计
    男生
    21
    23
    44
    女生
    6
    29
    35
    总计
    27
    52
    79

    认为作业多
    认为作业不多
    总数
    喜欢玩电脑游戏
    18
    9
    27
    不喜欢玩电脑游戏
    8
    15
    23
    总数
    26
    24
    50
    专业
    性别
    非统计专业
    统计专业

    13
    10

    7
    20
    未感冒
    感冒
    合计
    使用血清
    258
    242
    500
    未使用血清
    216
    284
    500
    合计
    474
    526
    1000

    室外工作
    室内工作
    总计
    有呼吸系统疾病
    150


    无呼吸系统疾病

    100

    总 计
    200


    性别
    锻炼
    合计
    不经常(Y=0)
    经常(Y=1)
    女生(X=0)
    192
    331
    523
    男生(X=1)
    128
    473
    601
    合计
    320
    804
    1124
    性别
    锻炼
    合计
    不经常(Y=0)
    经常(Y=1)
    女生(X=0)
    192
    331
    523
    男生(X=1)
    128
    473
    601
    合计
    320
    804
    1124
    学校
    数学成绩
    合计
    不优秀(Y=0)
    优秀(Y=1)
    甲校(X=0)
    33
    10
    43
    乙校(X=1)
    38
    7
    45
    合计
    71
    17
    88
    学校
    数学成绩
    合计
    不优秀(Y=0)
    优秀(Y=1)
    甲校(X=0)
    33
    10
    43
    乙校(X=1)
    38
    7
    45
    合计
    71
    17
    88
    X
    Y
    合计
    Y=0
    Y=1
    X=0
    a
    b
    a+b
    X=1
    c
    d
    c+d
    合计
    a+c
    b+d
    n=a+b+c+d
    学校
    数学成绩
    合计
    不优秀(Y=0)
    优秀(Y=1)
    甲校(X=0)
    33
    10
    43
    乙校(X=1)
    38
    7
    45
    合计
    71
    17
    88
    疗法
    疗效
    合计
    未治愈
    治愈

    15
    52
    67

    6
    63
    69
    合计
    21
    115
    136
    疗法
    疗效
    合计
    未治愈
    治愈

    15
    52
    67

    6
    63
    69
    合计
    21
    115
    136
    疗法
    疗效
    合计
    未治愈
    治愈

    6
    63
    69

    15
    52
    67
    合计
    21
    115
    136
    疗法
    疗效
    合计
    治愈
    未治愈

    52
    15
    67

    63
    6
    69
    合计
    115
    21
    136
    吸烟
    肺癌
    合计
    非肺癌患者
    肺癌患者
    非吸烟者
    7775
    42
    7817
    吸烟者
    2099
    49
    2148
    合计
    9874
    91
    9965
    P(χ≥x0)
    0.50
    0.40
    0.25
    0.15
    0.10
    0.05
    0.025
    0.010
    0.005
    0.001
    x0
    0.455
    0.708
    1.323
    2.072
    2.706
    3.841
    5.024
    6.635
    7.879
    10.828
    P(χ≥x0)
    0.50
    0.40
    0.25
    0.15
    0.10
    0.05
    0.025
    0.010
    0.005
    0.001
    x0
    0.455
    0.708
    1.323
    2.072
    2.706
    3.841
    5.024
    6.635
    7.879
    10.828

    室外工作
    室内工作
    总计
    有呼吸系统疾病
    150
    200
    350
    无呼吸系统疾病
    50
    100
    150
    总 计
    200
    300
    500

    相关学案

    高中数学人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表优秀学案:

    这是一份高中数学人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表优秀学案,文件包含人教A版数学高二选择性必修第三册831分类变量与列联表导学案原卷版docx、人教A版数学高二选择性必修第三册831分类变量与列联表导学案解析版docx等2份学案配套教学资源,其中学案共30页, 欢迎下载使用。

    高中数学8.3 分类变量与列联表学案:

    这是一份高中数学8.3 分类变量与列联表学案,共22页。学案主要包含了典例解析等内容,欢迎下载使用。

    数学选择性必修 第三册第八章 成对数据的统计分析8.3 分类变量与列联表学案设计:

    这是一份数学选择性必修 第三册第八章 成对数据的统计分析8.3 分类变量与列联表学案设计,共5页。学案主要包含了规律方法,变式训练1,变式训练2,变式训练3等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map