所属成套资源:2025年中考数学二轮复习 专题巩固练习卷(含答案)
2025年中考数学二轮复习《方程实际问题》专题巩固练习4(含答案)
展开
这是一份2025年中考数学二轮复习《方程实际问题》专题巩固练习4(含答案),共7页。试卷主要包含了选择题,填空题,八年级学生分别到雷锋,解答题等内容,欢迎下载使用。
一、选择题
如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是( )
A.3×2x+5=2x B.3×20x+5=10x×2
C.3×20+x+5=20x D.3×(20+x)+5=10x+2
小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?( )
A. B. C. D.
甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg,甲搬运5 000 kg所用时间与乙搬运8 000 kg所用时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运x kg货物,则可列方程为( )
A.eq \f(5 000,x-600)=eq \f(8 000,x) B.eq \f(5 000,x)=eq \f(8 000,x+600) C.eq \f(5 000,x+600)=eq \f(8 000,x) D.eq \f(5 000,x)=eq \f(8 000,x-600)
某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为( )
A.2(1+x)2=8 B.2(1﹣x)2=8
C.2+2(1+x)+2(1+x)2=8 D.2(1+x)+2(1+x)2=8
二、填空题
七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人,设到雷锋纪念馆的人数为x人,可列方程为 .
我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马、大马各有多少匹.若设小马有x匹,大马有y匹,依题意,可列方程组为 .
某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了 支.
某药品经过两次降价,每瓶零售价由162元降为128元,已知两次降价的百分率相同,设每次降价的百分率为x,则根据题意可得方程 .
三、解答题
打折前,买10件A商品和5件B商品共用了400元,买5件A商品和10件B商品共用了350元.
(1)求打折前A商品、B商品每件分别多少钱?
(2)打折后,买100件A商品和100件B商品共用了3800元.比不打折少花多少钱?
为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他骑公共自行车比自驾车平均每小时少行驶45千米,他从家出发到上班地点,骑公共自行车所用的时间是自驾车所用的时间的4倍.小张骑公共自行车平均每小时行驶多少千米?
甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).
(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;
(2)购买的椅子至少多少张时,到乙厂家购买更划算?
某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是111.求每个支干长出多少个小分支?
某物流公司要同时运输A,B两种型号的商品共13件,A型商品每件体积为2 m3,每件质量为1吨;B型商品每件体积为0.8 m3,每件质量为0.5吨,这两种型号商品的体积之和不超过18.8 m3,质量之和大于8.5吨.
(1)求A、B两种型号商品的件数共有几种可能?写出所有可能情况;
(2)若一件A型商品运费200元,一件B型商品运费为180元,则(1)中哪种情况的运费最少?最少运费是多少?
某玩具经销商用1.6万元购进了一批玩具,上市后一周全部售完.该经销商又用3.4万元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该经销商两次共购进这种玩具多少套?
(2)若第一批玩具销售完后总利润率为25%,购进的第二批玩具仍以第一批的相同售价出售,则第二批玩具全部售完后,这二批玩具经销商共可获利多少元?
如图,A,B,C,D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,点Q以2cm/s的速度向点D移动,当点P运动到点B停止时,点Q也随之停止运动,问P,Q两点从出发经过几秒时,点P,Q间的距离是10cm?
\s 0 答案
D
A
B
D.
答案为:2x+56=589﹣x
答案为:.
答案为:8.
答案为:162(1﹣x)2=128.
解:(1)设打折前A商品每件x元、B商品每件y元,根据题意,得
由题意得解之得
答:打折前A商品每件30元、B商品每件20元.
(2)打折前,买100件A商品和100件B商品共用:
100×30+100×20=5000 (元)
比不打折少花:5000﹣3800=1200 (元)
答:打折后,买100件A商品和100件B商品比不打折少花1200元.
解:设小张骑公共自行车上班平均每小时行驶x千米,则骑自驾车平均每小时行驶(x+45)千米.
根据题意列方程得: =4×,解得:x=15,
经检验,x=15是原方程的解,且符合实际意义.
答:小张用骑公共自行车方式上班平均每小时行驶15千米.
解:(1)根据甲、乙两个厂家推出各自销售的优惠方案:
甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;
乙厂家所需金额为:(3×800+80x)×0.8=1920+64x;
(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.
答:购买的椅子至少15张时,到乙厂家购买更划算.
解:设每个支干长出x个小分支,根据题意,得
1+x+x2=111.
解得x1=10,x2=-11(舍去).
答:每个支干长出10个小分支.
解:(1)设A种型号的商品有x件,
则B种型号的商品有(13-x)件,
由题意,得:eq \b\lc\{(\a\vs4\al\c1(2x+0.8(13-x)≤18.8,,1·x+0.5(13-x)>8.5.))
解这个不等式组,得:eq \b\lc\{(\a\vs4\al\c1(x≤7,,x>4,))即4<x≤7.
∵x为正整数,
∴x=5,6,7.
∴13-x=8,7,6.
答:共有三种可能,即A种型号的商品分别为5,6,7件时,对应的B种型号的商品分别为8,7,6件.
(2)∵A种型号的商品的运费>B种型号的商品的运费,
∴要使运费最少,则只要A种型号的商品尽量少.
∴当A种型号的商品为5件,B种型号的商品为8件时运费最少,最少运费为:
200×5+180×8=2 440(元).
解:(1)设第一次购进了x套,则第二次购进了2x套.
依题意,列方程得: +10=,解得:x=100,
经检验x=100是原方程的根,2x=200,
答:该经销商两次共购进这种玩具300套;
(2)由(1)得第一批每套玩具的进价为=160(元),
又∵总利润率为25%,
∴售价为160(1+25%)=200元,
第二批玩具的进价为170元,售价也为200元.40×100+30×200=10000元.
答:这二批玩具经销商共可获利10000元.
解:设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,作PH⊥CD,垂足为H,
则PH=AD=6,PQ=10,
∵DH=PA=3t,CQ=2t,
∴HQ=CD﹣DH﹣CQ=|16﹣5t|,
由勾股定理,得(16﹣5t)2+62=102,
解得t1=4.8,t2=1.6.
答:P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.
相关试卷
这是一份2025年中考数学二轮复习《方程实际问题》专题巩固练习2(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025年中考数学二轮复习《方程实际问题》专题巩固练习04(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025年中考数学二轮复习《方程实际问题》专题巩固练习03(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。