山东省淄博市2023-2024学年七年级下学期第一次月考数学试卷(解析版)
展开
这是一份山东省淄博市2023-2024学年七年级下学期第一次月考数学试卷(解析版),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(共10小题,每小题4分,共40分,请把正确的选项填在下面相应的表格里.)
1. 如图,对于直线AB,线段CD,射线EF,其中能相交的是( )
A. B.
C. D.
【答案】B
【解析】A、AB是直线,CD是线段不能延伸,故不能相交,不符合题意;
B:AB是直线,EF是射线,都可延伸,故可相交,符合题意;
C:EF是射线,CD是线段,不能延伸,故不能相交,不符合题意;
D:EF是射线,延伸方向与直线AB不相交,不符合题意;
故选B.
2. 下列运算正确的是( )
A. B.
C. D.
【答案】B
【解析】A、和不是同类项,不能合并,故A不正确,不符合题意;
B、,故B正确,符合题意;
C、,故C不正确,不符合题意;
D、,故D不正确,不符合题意;
故选:B.
3. 计算:( )
A. B. C. D.
【答案】B
【解析】.
故选:B.
4. 已知点C为线段上一点,若,则线段等于( )
A. 或B.
C. D. 或
【答案】A
【解析】当点C在线段上时,,
当点C在线段的延长线上时,,
故选:A.
5. 从五边形的一个顶点出发,可以画出条对角线,它们将五边形分成个三角形.则、的值分别为( )
A. 1,2B. 2,3C. 3,4D. 4,4
【答案】B
【解析】对角线的数量m=5-3=2条;
分成的三角形的数量为n=5-2=3个.
故选:B.
6. 如图,甲,乙两人同时从A地出发,沿图示方向分别步行前进到B,C两地,现测得为100°,B地位于A地的北偏东50°方向,则C地位于A地的( )
A. 北偏西50°方向B. 北偏西30°方向
C. 南偏东50°方向D. 南偏东30°方向
【答案】D
【解析】∵B地位于A地的北偏东50°方向,
∴∠EAB=50°,
∵,
∴,
即C地位于A地的南偏东30°方向,故D正确.
故选:D.
7. 下列运算正确的是( )
A B.
C. D.
【答案】D
【解析】A、63.5°=63°30′,故原选项计算错误;
B、18°18′18″=18.305°,故原选项计算错误;
C、36.15°=36.9′,故原选项计算错误;
D、28°39′+17°31'=46°10',故原选项计算正确;
故选:D.
8. 计算的结果为( )
A. B. C. D.
【答案】C
【解析】
,
故选:C.
9. 两根木条,一根长另一根长将它们一端重合且放在同一直线上,此时两根木条的中点之间的距离为( )
A. B.
C. 或 D. 点或
【答案】C
【解析】如果将两条木条重叠摆放,则,;
如果两条木条相接摆放,则,.
故选:C.
10. 已知,当x为任意数时该等式都成立,则的值为( )
A. 17B. C. D. -17
【答案】B
【解析】,
∴,
∵,当x为任意数时该等式都成立,
∴,
∴
,
故选:B.
二、填空题(共5小题,每小题4分,共20分,只要求填写最后结果.)
11. 王小毛同学做教室卫生时,发现座位很不整齐,他思考了一下,将第一座和最后一座固定之后,沿着第一座最后一座这条线就把座位摆整齐了!他利用了数学原理:_____.
【答案】两点确定一条直线
【解析】王小毛利用的数学原理:两点确定一条直线;
故答案为:两点确定一条直线.
12. 我国古代数学家祖冲之推算出的近似值为,它与的误差小于用科学记数法表示为______.
【答案】
【解析】用科学记数法表示为.
故答案为:.
13. 计算:_______.
【答案】-x3.
【解析】,
故答案为.
14. 平面内有公共端点的三条射线,构成的角,则的度数是__________________.
【答案】或
【解析】射线在的内部时,
∵,
∴;
射线在的外部时,
∵,
∴.
∴的度数为或.
故答案:或
15. 若m满足,则整数m的值为____________________.
【答案】2或0或
【解析】∵,
当,且时,,符合题意;
此时,
当时,,此时,符合题意;
当时,,此时,符合题意;
综上所述,整数m的值为2或0或.
三、解答题(本大题共8小题,共90分,解答要写出必要的文字说明或演算步骤.)
16. 如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)
(1)画直线;
(2)画射线;
(3)连接并延长到E,使得;
(4)在线段上取点P,使的值最小.
解:(1)如图,直线即为所画的直线;
(2)如图,射线即为所画的射线,
(3)如图,线段即为所画的线段,
(4)如图,点P即为所画的点,
17. 计算:
(1);
(2);
(3).
解:(1);
(2);
(3).
18. 将一个圆分割成三个扇形,它们的圆心角的度数比为,求这三个扇形的圆心角的度数.
解:因为一个周角为360°,所以分成的三个扇形的圆心角分别是:
,,,
答:这三个扇形的圆心角的度数分别为60°,120°,180°.
19. 先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.
解:3a(2a2﹣4a+3)﹣2a2(3a+4)
=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,
当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.
20. 已知线段,延长AB至点C,使,D是线段的中点.求线段的长.
解:∵,,
∴,
∴.
∵D为的中点,
∴.
∴.
21. 如图,已知,,是的平分线,是的平分线,求的度数.
解:∵,,
∴,
∵是的平分线,是的平分线,
∴,
∴.
22. (1)已知,求m的值;
(2)已知,求的值.
解:(1)∵,
∴,
∴,
∴,
解得:;
(2)∵,
∴
,
∵,
∴原式.
23. 探究题:如图①,已知线段,点C为线段上的一个动点,点D、E分别是和的中点.
(1)若点C恰好是中点,则 ;
(2)试说明无论点C在线段的任何位置,的长不变;
(3)知识迁移:如图②,已知,过角的内部任一点C画射线,若分别平分和,试说明与射线的位置无关.
解:(1)∵,点C恰好是中点,
∴,
∵点D、E分别是和的中点,
∴,
;
故答案为:7
(2)∵点D、E分别是和的中点,
∴,
∴,
∴不论取何值(不超过12cm),的长不变;
(3)∵分别平分和,
∴,
∴.
∵,
∴的度数与射线的位置无关.
相关试卷
这是一份山东省淄博市周村区2023-2024学年七年级下学期期中数学试卷(解析版),共13页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份山东省淄博市中考数学试卷(含解析版),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份[数学]山东省淄博市周村区2023-2024学年七年级下学期期中试题(解析版),共13页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。