所属成套资源:2025年中考数学二轮复习 专题巩固练习(含答案)
2025年中考数学二轮复习《函数实际问题》专题巩固练习(六)(含答案)
展开
这是一份2025年中考数学二轮复习《函数实际问题》专题巩固练习(六)(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题
有甲、乙两个大小不同的水桶,容量分别为x、y公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x、y的关系式是( )
A.y=20-x B.y=x+10 C.y=x+20 D.y=x+30
某学校到县城的路程为5 km,一同学骑车从学校到县城的平均速度v(km/h)与所用时间t(h)之间的函数解析式是( )
A.v=5t B.v=t+5 C.v=eq \f(5,t) D.v=eq \f(t,5)
心理学家发现:学生对概念的接受能力y与提出概念的时间x(min)之间是二次函数关系,当提出概念13min时,学生对概念的接受力最大,为59.9;当提出概念30min时,学生对概念的接受能力就剩下31,则y与x满足的二次函数关系式为( )
A.y=﹣(x﹣13)2+59.9 B.y=﹣0.1x2+2.6x+31
C.y=0.1x2﹣2.6x+76.8 D.y=﹣0.1x2+2.6x+43
如图,己知线段AB=12厘米,动点P以2厘米/秒的速度从点A出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的函数关系的是( )
验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据,如下表.根据表中数据,可得y关于x的函数表达式为( )
A.y= B.y= C.y= D.y=
二、填空题
如图,A.B两地相距200km,一列火车从B地出发沿BC方向以120km/h的速度行驶,在行驶过程中,这列火车离A地的路程y(km)与行驶时间t(h)之间的函数关系式是_____
甲、乙两地相距100km,如果一辆汽车从甲地到乙地所用时间为x(h),汽车行驶的平均速度为y(km/h),那么y与x之间的函数关系式为 (不要求写出自变量的取值范围).
某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是 .
已知直角三角形的两直角边之和为2,则斜边长的最小值为 .
三、解答题
甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.
(1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件;
(2)当3≤x≤6时,求y与x之间的函数解析式;
(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?
张玲在玩QQ的某个游戏时,观察几位好友的信息发现:这个游戏等级数y与所得游戏豆x成反比例,已知这一游戏的最高级数为100级,且此时张玲某个好友的游戏等级为15,游戏豆为600个.张玲有这样两个疑问:
(1)能用一个含x的代数式表示出y吗?
(2)张玲现在的等级数刚刚达到40级,试求她的游戏等级升级到最高级还需扣掉多少游戏豆?
用一根长是20cm的细绳围成一个长方形(如图),这个长方形的一边的长为xcm,它的面积为ycm2.
(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?
(2)用表格表示当x从1变到9时(每次增加1),y的相应值;
(3)从上面的表格中,你能看出什么规律?
(4)猜想一下,怎样围法,得到的长方形的面积最大?最大是多少
某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.
(1)该物流公司月运输两种货物各多少吨?
(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?
某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,表中提供了部分采购数量.
(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的解析式.
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的eq \f(11,9),且A产品采购单价不低于1200元,求该商家共有几种进货方案.
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.
\s 0 答案
D
C
D
D.
A
答案为:y=200+120t(t≥0).
答案为:.
答案为:y=10(1+x)2
答案为:eq \r(2).
解:(1)这批零件一共有270个,
甲机器每小时加工零件:(90﹣550)÷(3﹣1)=20(个),
乙机器排除故障后每小时加工零件:(270﹣90﹣20×3)÷3=40(个);
故答案为:270;20;40;
(2)设当3≤x≤6时,y与x之间的函数关系是为y=kx+b,
把B(3,90),C(6,270)代入解析式,得
,解得,
∴y=60x﹣90(3≤x≤6);
(3)设甲价格x小时时,甲乙加工的零件个数相等,
①20x=30,解得x=15;
②50﹣20=30,
20x=30+40(x﹣3),解得x=4.5,
答:甲加工1.5h或4.5h时,甲与乙加工的零件个数相等.
解:(1)由于游戏等级数y与所得游戏豆x成反比例,可设y=eq \f(k,x)(x>0).
由题意知,当x=600时,y=15,
则k=xy=600×15=9 000.
∴y与x的函数解析式为y=eq \f(9 000,x)(x>0).
(2)当等级数为40级,即y=40时,把y=40代入y=eq \f(9 000,x),得x=225.
当游戏等级升到最高级,即y=100时,把y=100代入y=eq \f(9 000,x),得x=90.
225-90=135(个).
答:张玲的游戏等级升到最高级还需扣掉135个游戏豆.
解:(1)y=10﹣x)·x,x是自变量,它的值应在0到10之间(不包括0和10)
(2)如下表:
(3)可以看出:①当x逐渐增大时,y的值先由小变大,后又由大变小;
②y的值在由小变大的过程中,变大的速度越来越慢,反过来y的值在由大变小的过程中,变小的速度越来越快;
③当x取距5等距离的两数时,得到的两个y值相等.
(4)从表中可以发现x=5时,y取到最大的值25.
解:(1)设A种货物运输了x吨,设B种货物运输了y吨,
依题意得:,解之得:.
答:物流公司月运输A种货物100吨,B种货物150吨.
(2)设A种货物为a吨,则B种货物为(330﹣a)吨,
依题意得:a≤(330﹣a)×2,解得:a≤220,
设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,
根据一次函数的性质,可知W随着a的增大而增大
当W取最大值时a=220,即W=19800元.
所以该物流公司7月份最多将收到19800元运输费.
解:(1)设y1与x的解析式为y1=kx+b,
解得k=﹣20,b=1500,
∴y1与x的解析式为y1=﹣20x+1500(00,
∴当x≥9时,W随x的增大而增大.
∵11≤x≤15,
∴当x=15时,W最大=10650.
答:采购A产品15件时总利润最大,最大利润为10650元.
近视眼镜的度数y(度)
200
250
400
500
1000
镜片焦距x(米)
0.50
0.40
0.25
0.20
0.10
x
1
2
3
4
5
6
7
8
9
10
y
9
16
21
24
25
24
21
16
9
相关试卷
这是一份2025年中考数学二轮复习《方程实际问题》专题巩固练习5(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025年中考数学二轮复习《方程实际问题》专题巩固练习4(含答案),共7页。试卷主要包含了选择题,填空题,八年级学生分别到雷锋,解答题等内容,欢迎下载使用。
这是一份2025年中考数学二轮复习《方程实际问题》专题巩固练习3(含答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。