![备战2025年高考化学考点一遍过考点58分子结构与性质教案(Word版附解析)第1页](http://img-preview.51jiaoxi.com/3/7/16354902/0-1731154233194/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![备战2025年高考化学考点一遍过考点58分子结构与性质教案(Word版附解析)第2页](http://img-preview.51jiaoxi.com/3/7/16354902/0-1731154233256/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![备战2025年高考化学考点一遍过考点58分子结构与性质教案(Word版附解析)第3页](http://img-preview.51jiaoxi.com/3/7/16354902/0-1731154233274/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
备战2025年高考化学考点一遍过考点58分子结构与性质教案(Word版附解析)
展开
这是一份备战2025年高考化学考点一遍过考点58分子结构与性质教案(Word版附解析),共34页。教案主要包含了共价键,分子的立体结构,分子间作用力与分子的性质等内容,欢迎下载使用。
一、共价键
1.共价键的定义、本质与特征
(1)定义:原子间通过共用电子对(电子云的重叠)所形成的相互作用。
(2)本质:在原子之间形成共用电子对(电子云的重叠)。
(3)特征:具有方向性和饱和性。
共价键的方向性决定着分子的立体构型,共价键的饱和性决定着每个原子所能形成的共价键的总数或以单键连接的原子数目是一定的。
2.共价键的分类
σ键、π键的区别
注意:
(1)s轨道与s轨道重叠形成σ键时,电子不是只在两核间运动,而是在两核间出现的概率较大。
(2)因s轨道是球形的,故s轨道和s轨道形成σ键时,无方向性。两个s轨道只能形成σ键,不能形成π键。
(3)两个原子间可以只形成σ键,但不能只形成π键。
3.键参数——键能、键长、键角
①键能:气态基态原子形成 1 ml化学键释放的最低能量。键能越大,化学键越稳定。
②键长:形成共价键的两个原子之间的核间距。键长越短,往往键能越大,共价键越稳定。
③键角:在多原子分子中,两个共价键之间的夹角。它是描述分子立体结构的重要参数。
键参数的关系
4.等电子原理
①等电子体:原子总数相同、价电子总数相同的粒子互称为等电子体。如N2与CO、O3与SO2是等电子体,但N2与C2H2不是等电子体。
②等电子原理:等电子体具有相似的化学键特征,它们的许多性质相近,此原理称为等电子原理,例如CO和N2的熔沸点、溶解性等都非常相近。
③常见的等电子体:N2与CO,CO2与N2O,O3、与SO2,、与SO3,、与 QUOTE \* MERGEFORMAT ,与B3N3H6(硼氮苯)等。
二、分子的立体结构
1.杂化轨道理论
当原子成键时,原子内部能量相近的原子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。
②杂化过程
③杂化轨道理论预测分子的立体构型
2.价层电子对互斥理论
①含义
价层电子对互斥理论认为,分子的立体构型是价层电子对相互排斥的结果,价层电子对是指分子中的中心原子上的电子对,包括σ键电子对和中心原子上的孤电子对(未形成共价键的电子对)。
分子中的价层电子对由于排斥力作用而趋向于尽可能远离以减小排斥力,分子尽可能采取对称的立体构型。电子对之间的夹角越大,排斥力越小。
②价层电子对互斥模型
价层电子对互斥模型说明的是价层电子对的立体构型,而分子的立体构型指的是成键电子对的立体构型,不包括孤电子对。
(1)当中心原子上无孤电子对时,二者的构型一致;
(2)当中心原子上有孤电子对时,二者的构型不一致。
3.配位键和配位化合物
(1)孤电子对
分子或离子中没有跟其他原子共用的电子对称孤电子对。
(2)配位键
①配位键的形成:成键原子一方提供孤电子对,另一方提供空轨道形成共价键。
②配位键的表示方法
如A→B,其中A表示提供孤电子对的原子,B表示提供空轨道的原子。如可表示为,在中,虽然有一个N—H键形成过程与其他3个N—H键形成过程不同,但是一旦形成之后,4个共价键就完全相同。
(3)配合物
①组成:以[Cu(NH3)4]SO4为例
②形成条件
中心原子有空轨道,如Fe3+、Cu2+、Zn2+、Ag+等。
配位体有孤电子对,如H2O、NH3、CO、F−、Cl−、CN−等。
易错警示
(1)共价键的成键原子可以都是非金属原子,也可以是金属原子与非金属原子。如Al与Cl,Be与Cl等。
(2)一般情况下,σ键比π键强度大,但有特殊情况,必要时须先进行键能计算,然后才能判断。
(3)判断共价键的极性可以根据两成键原子的电负性差值,电负性差值为0形成非极性键,差值越大键的极性越强,一般差值大于1.7时形成的是离子键。
(4)并不是所有的共价键都有方向性,如s−s σ键无论s轨道从哪个方向重叠都相同,因此这种共价键没有方向性。
4.分子或离子立体构型的判断方法
(1)σ键电子对数的确定
由分子式确定σ键电子对数。例如,H2O的中心原子为O,O有2对σ键电子对;NH3的中心原子为N,N有3对σ键电子对。
(2)中心原子上的孤电子对数的确定
中心原子上的孤电子对数=(a−xb)。式中a为中心原子的价电子数,对于主族元素来说,价电子数等于原子的最外层电子数;x为与中心原子结合的原子数;b为与中心原子结合的原子最多能接受的电子数(氢为1,其他原子为“8−该原子的价电子数”)。例如,SO2的中心原子为S,S的价电子数为6(即S的最外层电子数为6),则a=6;与中心原子S结合的O的个数为2,则x=2;与中心原子结合的O最多能接受的电子数为2,则b=2。所以,SO2的中心原子S上的孤电子对数=×(6−2×2)=1。
一些常见的分子、离子的价层电子对数和立体构型如下表。
5.分子中中心原子的杂化类型的判断方法
(1)由杂化轨道数判断
杂化轨道用来形成σ键和容纳孤电子对,杂化轨道数=中心原子的孤电子对数+中心原子的σ键个数
(2)根据杂化轨道的立体构型判断
①若杂化轨道立体构型为正四面体形或三角锥形,则分子的中心原子发生sp3杂化。
②若杂化轨道立体构型为平面三角形,则分子的中心原子发生sp2杂化。
③若杂化轨道立体构型为直线形,则分子的中心原子发生sp杂化。
(3)根据杂化轨道之间的夹角判断
若杂化轨道之间的夹角为109°28',则分子的中心原子发生sp3杂化;若杂化轨道之间的夹角为120°,则分子的中心原子发生sp2杂化;若杂化轨道之间的夹角为180°,则分子的中心原子发生sp杂化。
(4)根据等电子体原理结构相似进行推断,如CO2是直线形分子,CNS−、、与CO2是等电子体,所以粒子构型均为直线形,中心原子均采用sp杂化。
6.分子立体构型、键的极性与分子的极性
三、分子间作用力与分子的性质
1.分子间作用力
(1)概念:物质分子之间普遍存在的相互作用力,称为分子间作用力。
(2)分类:分子间作用力最常见的是范德华力和氢键。
(3)强弱:范德华力HClO3>HClO2>HClO。
考向一 共价键的类别、键参数
典例1 下列说法中正确的是
A.分子的键长越长,键能越高,分子越稳定
B.元素周期表中的第ⅠA族(除H外)和第ⅦA族元素的原子间易形成离子键
C.水分子可表示为H—O—H,分子的键角为180°
D.H—O键键能为462.8 kJ·ml-1,即18 g H2O分解成H2和O2时,消耗能量为2×462.8 kJ
【解析】键长越长,键能越小,分子越不稳定,A错误;共价键一般形成于非金属元素之间,而第ⅠA族元素(H除外)均是活泼金属元素,第ⅦA族元素均是活泼非金属元素,二者易形成离子键,B正确;水分子立体构型为V形,两个H—O键的键角约为105°,C错误;断裂2 ml H—O键吸收2×462.8 kJ能量,而不是H2O分解成H2和O2时消耗的能量,D错误。
【答案】B
1.(1)Ge与C是同族元素,C原子之间可以形成双键、叁键,但Ge原子之间难以形成双键或叁键。从原子结构角度分析,原因是 。
(2)碳在形成化合物时,其键型以共价键为主,原因是 。
(3)1 ml乙醛分子中含有的σ键的数目为 。
(4)H与O、N、S形成的二元共价化合物分子中既含有极性共价键、又含有非极性共价键的化合物是 (填化学式,写出两种)。
(5)石墨晶体中,层内C—C键的键长为 142 pm,而金刚石中C—C键的键长为154 pm。其原因是金刚石中只存在C—C间的 共价键,而石墨层内的 C—C间不仅存在 共价键,还有 键。
考向二 价电子对互斥理论及其应用
典例1 下列描述中正确的是
A.CO2分子的立体构型为V形
B.的立体构型为平面三角形
C.SF6中每个原子均满足最外层8电子稳定结构
D.SiF4和 QUOTE SO32- 的中心原子均为sp3杂化
【解析】CO2分子中C原子形成2个σ键,孤电子对数为0,为直线形分子;中Cl原子形成3个σ键,孤电子对数为 QUOTE (7+1)-(3×2)2 =1,为三角锥形离子;SF6中S原子最外层电子数为6×2=12;SiF4分子中Si原子形成4个σ键,孤电子对数为0,为sp3杂化, QUOTE SO32- 中S原子形成3个σ键,孤电子对数为 QUOTE (6+2)-(3×2)2 =1,为sp3杂化,D正确。
【答案】D
2.用价层电子对互斥理论(VSEPR)可以预测许多分子或离子的立体构型,有时也能用来推测键角大小,下列判断正确的是
A.SO2、CS2、HI都是直线形的分子
B.BF3键角为120°,SnBr2键角大于120°
C.CH2O、BF3、SO3都是平面三角形的分子
D.PCl3、NH3、PCl5都是三角锥形的分子
考向三 杂化轨道理论及其应用
典例1 下列中心原子的杂化轨道类型和分子几何构型不正确的是
A.PCl3中P原子sp3杂化,为三角锥形
B.BCl3中B原子sp2杂化,为平面三角形
C.CS2中C原子sp杂化,为直线形
D.H2S分子中,S为sp杂化,为直线形
【解析】PCl3分子中P原子形成3个σ键,孤对电子数为eq \f(5+3×1,2)-3=1,为sp3杂化,三角锥形,A正确;BCl3分子中B原子形成3个σ键,孤对电子数为eq \f(3+3×1,2)-3=0,为sp2杂化,平面三角形,B正确;CS2分子中C原子形成2个σ键,孤对电子数为eq \f(4,2)-2=0,为sp杂化,直线形,C正确;H2S分子中,S原子形成2个σ键,孤对电子数为eq \f(6+2×1,2)-2=2,为sp3杂化,V形,D错误。
【答案】D
3.下列分子中的中心原子杂化轨道的类型相同的是
A.CO2与SO2B.CH4与NH3
C.BeCl2与BF3D.C2H2与C2H4
“三方法”判断分子中心原子的杂化类型
(1)根据价层电子对数判断
(2)根据结构(简)式判断
在结构(简)式中,若C、N等原子形成单键时为sp3杂化、双键时为sp2杂化、三键时为sp杂化。
(3)根据等电子原理进行判断
如CO2是直线形分子,CNS−、与CO2是等电子体,所以分子构型均为直线形,中心原子均采用sp杂化。
考向四 等电子原理应用
典例1 根据等电子原理判断,下列说法中错误的是
A.B3N3H6分子中所有原子均在同一平面上
B.B3N3H6分子中存在双键,可发生加成反应
C.H3O+和NH3是等电子体,均为三角锥形
D.CH4和NHeq \\al(+,4)是等电子体,均为正四面体形
【解析】B3N3H6和苯是等电子体,其结构相似;C项,H3O+和NH3是等电子体,根据氨气分子的立体构型判断水合氢离子的立体构型;D项,CH4和NHeq \\al(+,4)是等电子体,根据甲烷的立体构型判断铵根离子的立体构型。
【答案】B
4.根据等电子原理写出下列分子或离子的立体构型。
(1)N2O ;
(2)H3O+ ;
(3)O3 ;
(4) 。
常见的等电子体汇总
考向五 配合物理论及其应用
典例1 关于化学式为[TiCl(H2O)5]Cl2·H2O的配合物,下列说法中正确的是
A.配体是Cl-和H2O,配位数是9
B.中心离子是Ti4+,配离子是[TiCl(H2O)5]2+
C.内界和外界中Cl-的数目比是1∶2
D.加入足量AgNO3溶液,所有Cl-均被完全沉淀
【解析】[TiCl(H2O)5]Cl2·H2O,配体是Cl-、H2O,提供孤电子对;中心离子是Ti3+,配合物中配位离子Cl-不与Ag+反应,外界中的Cl-与Ag+反应,据此分析解答。
【答案】C
5.已知CCln·mNH3可表示+3价C的一种八面体配合物,若0.1 ml配合物与足量AgNO3作用生成0.2 ml AgCl沉淀,则m、n的值是
A.m=4,n=2B.m=4,n=5
C.m=3,n=3D.m=5,n=3
考向六 微粒间作用力类型的判断及对物质性质的影响
典例1 (1)H2O在乙醇中的溶解度大于H2S,其原因是________________________。
(2)关于化合物,下列叙述正确的是________。
A.分子间可形成氢键
B.分子中既有极性键又有非极性键
C.分子中有7个σ键和1个π键
D.该分子在水中的溶解度大于2丁烯
(3)已知苯酚(OH)具有弱酸性,其K=1.1×10-10;水杨酸第一级电离形成的离子能形成分子内氢键,据此判断,相同温度下电离平衡常数K2(水杨酸)________K(苯酚)(填“>”或“<”),其原因是_____________________________。
(4)化合物NH3的沸点比化合物CH4的高,其主要原因是________________________。
(5)H2O分子内的O—H键、分子间的范德华力和氢键从强到弱依次为_______________。高,原因是_____________________________。
【解析】(2)题给化合物不能形成分子间氢键,A错误;是非极性键,C—H、C===O是极性键,B正确;该有机物的结构式为,σ键数目为9,π键数目为3,C错误;该有机物与H2O能形成分子间氢键,D正确。
(3)氧的电负性较大,则中形成分子内氢键,即O—H…O(或—COO-中双键氧与羟基氢之间形成氢键),其大小介于化学键和范德华力之间,使其更难电离出H+,则水杨酸第二步电离常数小于苯酚的电离常数。
(4)分子间氢键能使分子间作用力增大,使物质的熔、沸点升高。
(5)氢键弱于共价键而强于范德华力。前者形成分子间氢键,后者形成分子内氢键。
【答案】(1)水分子与乙醇分子之间能形成氢键 (2)BD
(3)< 能形成分子内氢键,使其更难电离出H+
(4)NH3分子间能形成氢键
(5)O—H键>氢键>范德华力 形成分子内氢键,而HOCHO形成分子间氢键,分子间氢键使分子间作用力增大,沸点升高
6.氨气溶于水时,大部分NH3与H2O以氢键(用“…”表示)结合形成NH3·H2O分子。根据氨水的性质可推知NH3·H2O的结构式为( )
范德华力、氢键及共价键的比较
考向七 键的极性和分子极性的关系
典例1 下列物质:①BeCl2 ②SiC ③白磷 ④BF3 ⑤NH3 ⑥过氧化氢,其中含极性键的非极性分子是
A.①④⑥ B.②③⑥C.①④ D.①③④⑤
【解析】①BeCl2空间构型是直线型,Cl-Be-Cl,是含极性键的非极性分子,正确;②SiC属于原子晶体,含有极性键,但不具有分子组成,错误;③白磷分子式为P4,不含极性键,含有的是非极性键,错误;④BF3是平面正三角形结构,是极性键构成的非极性分子,正确;⑤NH3中含有极性键,空间结构为三角锥形,正负电荷的中心不重合,为极性分子,错误;⑥过氧化氢是由极性键和非极性键构成的极性分子,错误。
【答案】C
7.常温下S2Cl2是橙黄色液体,其分子结构如图所示。少量泄漏会产生窒息性气味,遇水易水解,并产生酸性悬浊液。下列关于S2Cl2的说法错误的是
A.为非极性分子
B.分子中既含有极性键又含有非极性键
C.与S2Br2结构相似,熔沸点S2Br2>S2Cl2
D.与水反应的化学方程式可能为2S2Cl2+2H2OSO2↑+3S↓+4HCl
分子的极性判断方法
(1)分子的极性由共价键的极性和分子的立体构型两方面共同决定
①极性键极性分子 QUOTE 双原子分子,如HCl、NO、IBr等V形分子,如H2O、H2S、SO2等三角锥形分子,如NH3、PH3等非正四面体形分子,如CHCl3、CH2Cl2、CH3Cl等
②极性键或非极性键非极性分子 QUOTE 单质分子,如Cl2、N2、P4、I2等直线形分子,如CO2、CS2、C2H2等正四面体形分子,如CH4、CCl4、CF4等
(2)判断ABn型分子极性的经验规律
若中心原子A的化合价的绝对值等于该元素所在的主族序数,则为非极性分子,若不等则为极性分子。
1.在硼酸[B(OH)3]分子中,B原子与3个羟基相连,其晶体具有与石墨相似的层状结构。则分子中B原子杂化轨道的类型及同层分子间的主要作用力分别是
A.sp,范德华力 B.sp2,范德华力
C.sp2,氢键 D.sp3,氢键
2.关于原子轨道的说法正确的是
A.凡是中心原子采取sp3杂化轨道成键的分子其几何构型都是正四面体
B.CH4分子中的sp3杂化轨道是由4个H原子的1s 轨道和C原子的2p轨道混合形成
C.sp3杂化轨道是由同一个原子中能量相近的s 轨道和p轨道混合起来形成的一组新轨道
D.凡AB3型的共价化合物,其中心原子A均采用sp3杂化轨道成键
3.某物质的化学式为PtCl4•2NH3,其水溶液不导电,加入AgNO3溶液不产生沉淀,加入强碱也没有NH3放出,则关于此化合物的说法中正确的是
A.该配合物中中心原子(离子)的电荷数和配位数均为6
B.该配合物可能是平面正方形结构
C.Cl-和NH3分子均与中心原子(离子)形成配位键
D.配合物中心原子(离子)与Cl-形成配位键,而与NH3分子不形成配位键
4.下列有关分子的结构和性质的说法正确的是
A.H2O2和C2H2均为直线形的非极性分子
B.NF3和PCl3均为三角锥形分子,中心原子均为sp3杂化
C.H3BO3和H3PO3均为三元酸,结构式均为
D.CH4和白磷(P4)分子均为正四面体形分子,键角均为109°28′
5.已知含氧酸可用通式XOm(OH)n来表示,如X是S,当m=2,n=2,则这个式子就表示H2SO4。一般而言,该式中m大的是强酸,m小的是弱酸。下列各含氧酸中酸性最强的是
A.HClO2 B.H2SeO3
C.H3BO3 D.HMnO4
6.下列各组分子均属于非极性分子的是
①H2S ②CO2 ③HCl ④CCl4 ⑤NH3 ⑥CO ⑦BF3 ⑧HClO
A.①④⑧ B.②③⑥ C.②④⑦ D.④⑤⑧
7.二茂铁[(C5H5)2Fe] 的发现是有机金属化合物研究中具有里程碑意义的事件,它开辟了有机金属化合物研究的新领域。已知二茂铁熔点是173 ℃(在100 ℃时开始升华),沸点是249 ℃,不溶于水,易溶于苯、乙醚等非极性溶剂。下列说法不正确的是
A.二茂铁属于分子晶体
B.在二茂铁结构中,C5Heq \\al(-,5)与Fe2+之间形成的化学键类型是离子键
C.已知:环戊二烯的结构式为,则其中仅有1个碳原子采取sp3杂化
D.C5Heq \\al(-,5)中一定含π键
8.下列分子中,中心原子杂化轨道类型相同,分子的空间构型也相同的是
A.BeCl2、CO2 B.H2O、SO2
C.SO2、CH4 D.NF3、CH2O
9.胆矾CuSO4·5H2O可写成[Cu(H2O)4]SO4·H2O,其结构示意图如下:
下列说法正确的是
A.在上述结构示意图中,所有氧原子都采用sp2杂化
B.在上述结构示意图中,存在配位键、共价键,不存在离子键
C.胆矾是分子晶体,分子间存在氢键
D.胆矾中的两种结晶水在不同的温度下会分步失去
10.下列有关氢键的说法正确的是
A.HF溶液中存在三种类型的氢键
B.
C.H2O的稳定性高,是因为水分子间存在氢键
D.形成分子内氢键,故比难电离
11.东晋《华阳国志·南中志》卷四中已有关于白铜的记载,云南镍白铜(铜镍合金)闻名中外,曾主要用于造币,亦可用于制作仿银饰品。回答下列问题:
(1)镍元素基态原子的电子排布式为________,3d能级上的未成对电子数为________。
(2)硫酸镍溶于氨水形成[Ni(NH3)6]SO4蓝色溶液。
①[Ni(NH3)6]SO4中阴离子的空间构型是________。
②在[Ni(NH3)6]2+中Ni2+与NH3之间形成的化学键称为________,提供孤电子对的成键原子是________。
③氨的沸点________(填“高于”或“低于”)膦(PH3),原因是________;氨是________分子(填“极性”或“非极性”),中心原子的轨道杂化类型为________。
(3)单质铜及镍都是由________键形成的晶体;元素铜与镍的第二电离能分别为:ICu=1 958 kJ·ml–1、INi=1 753 kJ·ml-1,ICu>INi的原因是_____________________。
12.甲基呋喃与氨在高温下反应得到甲基吡咯:
(1)Zn的基态原子核外电子排布式为_______________________。
(2)配合物[Zn(NH3)3(H2O)]2+中,与Zn2+形成配位键的原子是__________(填元素符号)。
(3)1 ml甲基呋喃分子中含有σ键的数目为__________ml。
(4)甲基吡咯分子中碳原子轨道的杂化轨道类型是__________。与NH3分子互为等电子体的阳离子为__________。
(5)甲基吡咯的熔沸点高于甲基呋喃的原因是______________________。
13.原子结构与元素周期表存在着内在联系。根据所学物质结构知识,请你回答下列问题:
(1)苏丹红颜色鲜艳、价格低廉,常被一些企业非法作为食品和化妆品等的染色剂,严重危害人们健康。苏丹红常见有Ⅰ、Ⅱ、Ⅲ、Ⅳ4种类型,苏丹红Ⅰ的分子结构如图1所示。
苏丹红Ⅰ在水中的溶解度很小,微溶于乙醇,有人把羟基取代在对位形成图2所示的结构,则其在水中的溶解度会________(填“增大”或“减小”),原因是__________________________________。
(2)已知Ti3+可形成配位数为6,颜色不同的两种配合物晶体,一种为紫色,另一种为绿色。两种晶体的组成皆为TiCl3·6H2O。为测定这两种晶体的化学式,设计了如下实验:
a.分别取等质量的两种配合物晶体的样品配成待测溶液;
b.分别往待测溶液中滴入AgNO3溶液,均产生白色沉淀;
c.沉淀完全后分别过滤得两份沉淀,经洗涤干燥后称量,发现原绿色晶体的水溶液得到的白色沉淀质量为原紫色晶体的水溶液得到的沉淀质量的2/3。则绿色晶体配合物的化学式为________________,由Cl-所形成的化学键类型是______________。
(3)图中A、B、C、D四条曲线分别表示第ⅣA、ⅤA、ⅥA、ⅦA族元素的氢化物的沸点,其中表示ⅦA族元素氢化物沸点的曲线是______;表示ⅣA族元素氢化物沸点的曲线是______;同一族中第三、四、五周期元素的氢化物沸点依次升高,其原因______________________________;A、B、C曲线中第二周期元素的氢化物的沸点显著高于第三周期元素的氢化物的沸点,其原因是____________。
14.已知A、B、C、D、E、F为元素周期表前四周期原子序数依次增大的六种元素,其中A的一种同位素原子中无中子,B的一种核素在考古时常用来鉴定一些文物的年代,D与E同主族,且E的原子序数是D的2倍,F元素在地壳中的含量位于金属元素的第二位。试回答下列问题:
(1)F元素价层电子排布式为 。
关于B2A2的下列说法中正确的是 。
①B2A2中的所有原子都满足8电子稳定结构
②B2A2是由极性键和非极性键形成的非极性分子
③每个B2A2分子中σ键和π键数目比为1∶1
④B2A2分子中的A−B键属于s−sp σ键
(2)B、C、D三种元素第一电离能按由大到小的顺序排列为 (用元素符号表示)。B、C、D三种元素中与BD2互为等电子体的分子式为 (用元素符号表示)。
(3)A2E分子中心原子的杂化类型为 。比较A2D与A2E分子的沸点,其中沸点较高的原因为 。元素D可形成两种同素异形体,其中在水中溶解度更大的是 (填分子式)。
(4)已知碘酸(HIO3)和高碘酸(H5IO6)的结构分别如图1、2所示:
请比较二者酸性强弱:HIO3 H5IO6(填“>”“
相关教案
这是一份备战2025年高考化学考点一遍过考点07突破NA教案(Word版附解析),共19页。教案主要包含了以物质的量为核心的转换与计算,以物质的结构为依据求共价键数目,反应程度对粒子数目计算的影响等内容,欢迎下载使用。
这是一份备战2025年高考化学考点一遍过考点24原子结构教案(Word版附解析),共17页。教案主要包含了微粒的组成与结构,核外电子排布等内容,欢迎下载使用。
这是一份备战2025年高考化学考点一遍过考点34化学电源教案(Word版附解析),共19页。