所属成套资源:2025年中考数学一轮复习 单元检测卷(含答案)
2025年中考数学一轮复习《轴对称与等腰三角形》单元检测卷(含答案)
展开
这是一份2025年中考数学一轮复习《轴对称与等腰三角形》单元检测卷(含答案),共9页。试卷主要包含了选择题,填空题,解答题,综合题等内容,欢迎下载使用。
下列图形中,是轴对称图形的是( )
A. B. C. D.
下列说法中正确的是( )
①角平分线上任意一点到角的两边的线段长相等
②角是轴对称图形
③线段不是轴对称图形
④长方形是轴对称图形
A.①②③④ B.①②③ C.②④ D.②③④
点A(﹣3,2)关于x轴的对称点A′的坐标为( )
A.(﹣3,﹣2) B.(3,2) C.(3,﹣2) D.(2,﹣3)
如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则( )
A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP
如图,在△ABC中,AB=AC,∠BAC=58°,∠BAC的平分线与AB的垂直平分线交于点O,连接OC,则∠AOC的度数为( )
A.151° B.122° C.118° D.120°
如图,在△ABC中,AB=AC,∠ABC=70°,以B为圆心,任意长为半径画弧交AB,BC于点E,F,再分别以点E,F为圆心、以大于eq \f(1,2)EF长为半径画弧,两弧交于点P,作射线BP交AC于点D,则∠BDC为( )度.
A.65 B.75 C.80 D.85
一个正方形和一个等边三角形的位置如图所示,若∠2=50°,则∠1=( )
A.50° B.60° C.70° D.80°
如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )
A.4cm B.3cm C.2cm D.1cm
如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )
A.A点 B.B点 C.C点 D.D点
如图,△ABC的面积为10cm2,AP垂直∠B的平分线BP于P,则△PBC面积为( )
A.4cm2 B.5cm2 C.6cm2 D.7cm2
如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=( )
A.18° B.20° C.25° D.15°
如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.
下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
点M(3,﹣4)关于x轴的对称点的坐标是 .
如图,△ABC为等边三角形,AD为BC边上的高,则∠BAD= .
若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为 .
如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是________三角形.
如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是 .
如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:
以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;
再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;
再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…
这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= .
三、解答题
在直角坐标系中,已知点A(a+b,2-a)与点B(a-5,b-2a)关于y轴对称.
(1)试确定点A,B的坐标;
(2)如果点B关于x轴的对称点是C,求△ABC的面积.
在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D点,交AC于点E.
(1)若∠ABE=38°,求∠EBC的度数;
(2)若△ABC的周长为36cm,一边为13cm,求△BCE的周长.
如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:
(1)△AEF≌△CEB;
(2)AF=2CD.
如图,已知△ABC中,∠A=90°,AB=AC,D是BC边上的中点,E、F分别是AB、AC上的点,且∠EDF=90°,求证:BE=AF.
如图所示,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t s,解答下列问题:
(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.
(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由..
四、综合题
在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.
(2)设∠BAC=α,∠DCE=β.
①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;
②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).
\s 0 2025年中考数学一轮复习《轴对称与等腰三角形》单元检测卷(含答案)答案解析
一、选择题
D
C
答案为:A.
C.
B.
B.
C.
C
B.
B.
A.
解析:如图所示:
D.
二、填空题
答案为:(3,4).
答案为:30°.
答案为:5.
答案为:等边.
答案为:9.6.
答案为:9.
三、解答题
解:由题意,得a+b=5-a,2-a=b-2a,解得a=1,b=3.
∴点A的坐标是(4,1),点B的坐标是(-4,1).
(2)∵点B关于x轴的对称点是C,
∴点C的坐标是(-4,-1).
∴AB=8,BC=2.
∴S△ABC=8.
解:∵DE是AB的垂直平分线,
∴AE=BE,
∴∠A=∠ABE=38°
∵AB=AC,
∴∠ABC=∠C=71°
∴∠EBC=∠ABC-∠ABE=71°-38°=33°
由△ABC的周长为36cm
AB>BC,AB=AC可知AB=AC=13cm BC=10cm
△BCE的周长=BE+CE+BC=AC+BC=13+10=23(cm)
证明:(1)由于AB=AC,故△ABC为等腰三角形,∠ABC=∠ACB;
∵AD⊥BC,CE⊥AB,
∴∠AEC=∠BEC=90°,∠ADB=90°;
∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,
∴∠BAD=∠ECB,
在Rt△AEF和Rt△CEB中
∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,
所以△AEF≌△CEB(ASA)
(2)∵△ABC为等腰三角形,AD⊥BC,
故BD=CD,即CB=2CD,
又∵△AEF≌△CEB,
∴AF=CB=2CD.
证明:∵△ABC中,∠A=90°,AB=AC,D是BC边上的中点,
∴AD⊥BC,∠B=∠C=45°,∠BAD=∠FAD=45°,AD=BD=DC,
∴∠ADB=90°,
∴∠EDB=∠FDA=90°﹣∠ADE,
在△ADF和△BDE中
∴△ADF≌△BDE(ASA),
∴BE=AF.
解:(1)当点Q到达点C时,PQ与AB垂直,即△BPQ为直角三角形.
理由是:
∵AB=AC=BC=6cm,
∴当点Q到达点C时,BP=3cm,
∴点P为AB的中点.
∴QP⊥BA(等边三角形三线合一的性质).
(2)假设在点P与点Q的运动过程中,△BPQ能成为等边三角形,
∴BP=PQ=BQ,
∴6-t=2t,解得t=2.
∴当t=2时,△BPQ是个等边三角形.
四、综合题
解:(1) 90.
因为∠DAE=∠BAC ,
所以∠BAD=∠EAC,AB=AC,AD=AE,
所以△ABD≌△ACE,
所以∠ECA=∠DBA,
所以∠ECA=90°.
(2)①ɑ+β=180°.
理由:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,
又AB=AC,AD=AE,
∴△ABD≌△ACE,
∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,
∴∠B+∠ACB=∠DCE=β.
∵ɑ+∠B+∠ACB=180°,
∴α+β=180°.
(3)补充图形如下,ɑ=β.
相关试卷
这是一份2025年中考数学一轮复习《实数》单元检测卷(含答案),共6页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份中考数学一轮复习:专题15.8 轴对称图形与等腰三角形章末拔尖卷(沪科版)(解析版),共30页。
这是一份中考数学一轮复习考点梳理+单元突破练习 轴对称(含答案),共15页。试卷主要包含了对称轴,对称点,线段的垂直平分线定义,等边三角形角的特点,等边三角形的判定等内容,欢迎下载使用。