所属成套资源:2025年中考数学一轮复习题型分类练习 (2份,原卷版+解析版)
2025年中考数学一轮复习题型分类练习第一章 数与式(测试)(2份,原卷版+解析版)
展开
这是一份2025年中考数学一轮复习题型分类练习第一章 数与式(测试)(2份,原卷版+解析版),文件包含2025年中考数学一轮复习题型分类练习第一章数与式测试原卷版docx、2025年中考数学一轮复习题型分类练习第一章数与式测试解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
一.选择题(共10小题,满分30分,每小题3分)
1.【原创题】《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于( )
A.B.C.D.
【答案】C
【分析】将1万表示成,1亿表示成,然后用同底数幂的乘法法则计算即可.
【详解】∵1兆=1万×1万×1亿,
∴1兆=,
故选:C.
【点睛】本题考查同底数幂的乘法法则,科学记数法的表示方法,其中a的范围是,n是整数,正确确定a,n的值是解答本题的关键.
2.不一定相等的一组是( )
A.与B.与
C.与D.与
【答案】D
【分析】分别根据加法交换律、合并同类项、同底数幂的乘法以及去括号法则计算各项后,再进行判断即可得到结论.
【详解】解:A. =,故选项A不符合题意;
B. ,故选项B不符合题意;
C. ,故选项C不符合题意;
D. ,故选项D符合题意,
故选:D.
【点睛】此题主要考查了加法交换律、合并同类项、同底数幂的乘法以及去括号法则,熟练掌握相关运算法则是解答此题的关键.
【新考法】 数学与实际生活——生活中的数学原理
3.照相机成像应用了一个重要原理,用公式表示,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则u=( )
A.B.C.D.
【答案】C
【分析】利用分式的基本性质,把等式恒等变形,用含f、v的代数式表示u.
【详解】解:∵,
∴
∴,
∴,
故选:C.
【点睛】本题考查分式的加、减法运算,关键是异分母通分,掌握通分法则.
4.与结果相同的是( ).
A.B.
C.D.
【答案】A
【分析】根据有理数运算和二次根式的性质计算,即可得到答案.
【详解】
∵,且选项B、C、D的运算结果分别为:4、6、0
故选:A.
【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.
5.若取1.442,计算的结果是( )
A.-100B.-144.2
C.144.2D.-0.01442
【答案】B
【分析】类比二次根式的计算,提取公因数,代入求值即可.
【详解】
故选B.
【点睛】本题考查了根式的加减运算,类比二次根式的计算,提取系数,正确的计算是解题的关键.
6.【原创题】要比较与中的大小(x是正数),知道的正负就可以判断,则下列说法正确的是( )
A.B.C.D.
【答案】C
【分析】将进行化简得到,利用x是正数,可得出,即可判断A和B的大小,进而可得答案.
【详解】解:由题意可知:
∵,
∴,,
∴,即,
故选:C.
【点睛】本题考查比较分式大小,完全平方公式,解题的关键在于正确的通分化简.
7.已知,则( )
A.yB.C.D.
【答案】D
【分析】利用同底数幂的乘法的逆运算可得,再代入计算即可.
【详解】解:∵,
∴,
故选D
【点睛】本题考查的是同底数幂的乘法运算的逆运算,熟记“”是解本题的关键.
8.已知:,,,则a,b,c大小关系是( )
A. B. C. D.
【答案】C
【分析】首先求出,,的值,然后根据实数大小比较的方法,判断出,,大小关系即可.
【详解】,,,
,
故选:.
【点睛】此题主要考查了实数大小比较的方法,解答此题的关键要明确:正实数负实数,两个负实数绝对值大的反而小.
【新考法】 数学与规律探究——乘方类规律
9.我国宋代数学家杨辉发现了(,1,2,3,…)展开式系数的规律:
以上系数三角表称为“杨辉三角”,根据上述规律,展开式的系数和是( )
A.64B.128C.256D.612
【答案】C
【分析】由“杨辉三角”的规律可知,(a+b)8所有项的系数和为28,即可得出答案.
【详解】解:由“杨辉三角”的规律可知,
展开式中所有项的系数和为1,
展开式中所有项的系数和为2,
展开式中所有项的系数和为4,
展开式中所有项的系数和为8,
……
展开式中所有项的系数和为,
展开式中所有项的系数和为.
故选:C.
【点睛】本题考查了“杨辉三角”展开式中所有项的系数和的求法,解题关键是通过观察得出系数和的规律.
10.对于多项式,在任意一个字母前加负号,称为“加负运算”,例如:对b和d进行“加负运算”,得到:.规定甲同学每次对三个字母进行“加负运算”,乙同学每次对两个字母进行“加负运算”,下列说法正确的个数为( )
①乙同学连续两次“加负运算”后可以得到;②对于乙同学“加负运算”后得到的任何代数式,甲同学都可以通过“加负运算”后得到与之相反的代数式;③乙同学通过“加负运算”后可以得到16个不同的代数式
A.0B.1C.2D.3
【答案】C
【分析】①乙同学第一次对a和d,第二次对a和e进行加负运算,可得①正确;若乙同学对a和b进行加负运算得:,可得其相反的代数式为,则甲同学对c、d、e进行加负运算,可得与之相反的代数式,同理乙同学可改变字母或或或或或或或或,甲同学都可以通过“加负运算”后得到与之相反的代数式,可得②正确;若固定改变a,乙同学可改变字母或或或;若固定改变b,乙同学可改变字母或或;固定改变c,乙同学可改变字母或;固定改变d,乙同学可改变字母,可得③错误,即可.
【详解】解:①乙同学第一次对a和d进行加负运算得
;
第二次对a和e进行加负运算得
,故①正确;
②若乙同学对a和b进行加负运算得:
,
则其相反的代数式为,
∵甲同学对c、d、e进行加负运算得:,
同理乙同学可改变字母或或或或或或或或,甲同学都可以通过“加负运算”后得到与之相反的代数式,故②正确;
若固定改变a,乙同学可改变字母或或或;
若固定改变b,乙同学可改变字母或或;
固定改变c,乙同学可改变字母或;
固定改变d,乙同学可改变字母,
所以一共有4+3+2+1=10种,故③错误.
故选:C
【点睛】本题主要考察逻辑分析,注意甲乙同学可改变字母个数的不同是解题的关键.
二.填空题(共6小题,满分18分,每小题3分)
11. 【原创题】 12024的倒数是_________.|-2024|的相反数是_________. - [+(-2024)]= _________.
【答案】2024,-2024,-2024
12.写出一个无理数x,使得,则x可以是 (只要写出一个满足条件的x即可)
【答案】答案不唯一(如等)
【分析】从无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,
【详解】根据无理数的定义写一个无理数,满足即可;
所以可以写:
①开方开不尽的数:
②无限不循环小数,,
③含有π的数等.只要写出一个满足条件的x即可.
故答案为:答案不唯一(如等)
【点睛】本题考查了无理数的定义,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
【新考法】 数学与实际生活——游戏中的数学
13.小明和同学们玩扑克牌游戏.游戏规则是:从一副扑克牌(去掉“大王”“小王”)中任意抽取四张,根据牌面上的数字进行混合运算(每张牌上的数字只能用一次),使得运算结果等于24.小明抽到的牌如图所示,请帮小明列出一个结果等于24的算式 .
【答案】(5-3+2)×6(答案不唯一)
【分析】根据有理数的加、减、乘、除、乘方运算法则,进行计算即可解答.
【详解】解:由题意得:
(5-3+2)×6=24,
故答案为:(5-3+2)×6(答案不唯一).
【点睛】本题考查了有理数的混合运算,熟练掌握有理数的加、减、乘、除、乘方运算法则是解题的关键.
14.如果单项式与的和是单项式,那么 .
【答案】
【分析】由题意推出与是同类项,即可求解.
【详解】解:由题意得:与是同类项,
,
,
,
故答案为:.
【点睛】本题考查同类项的定义:如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.掌握相关定义即可求解.
15.现有甲、乙、丙三种不同的矩形纸片(边长如图).
(1)取甲、乙纸片各1块,其面积和为 ;
(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 块.
【答案】 4
【分析】(1)直接利用正方形面积公式进行计算即可;
(2)根据已知图形的面积公式的特征,利用完全平方公式即可判定应增加的项,再对应到图形上即可.
【详解】解:(1)∵甲、乙都是正方形纸片,其边长分别为
∴取甲、乙纸片各1块,其面积和为;
故答案为:.
(2)要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,则它们的面积和为,若再加上(刚好是4个丙),则,则刚好能组成边长为的正方形,图形如下所示,所以应取丙纸片4块.
故答案为:4.
【点睛】本题考查了正方形的面积公式以及完全平方公式的几何意义,解决本题的关键是牢记公式特点,灵活运用公式等,本题涉及到的方法为观察、假设与实践,涉及到的思想为数形结合的思想.
【新考法】 信息题
16.当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成个不同的数据二维码,现有四名网友对的理解如下:
YYDS(永远的神):就是200个2相乘,它是一个非常非常大的数;
DDDD(懂的都懂):等于;
JXND(觉醒年代):的个位数字是6;
QGYW(强国有我):我知道,所以我估计比大.
其中对的理解错误的网友是 (填写网名字母代号).
【答案】DDDD
【分析】根据乘方的含义即可判断YYDS(永远的神)的理解是正确的;根据积的乘方的逆用,将化为,再与比较,即可判断DDDD(懂的都懂)的理解是错误的;根据2的乘方的个位数字的规律即可判断JXND(觉醒年代)的理解是正确的;根据积的乘方的逆用可得,即可判断QGYW(强国有我)的理解是正确的.
【详解】是200个2相乘,YYDS(永远的神)的理解是正确的;
,DDDD(懂的都懂)的理解是错误的;
,
2的乘方的个位数字4个一循环,
,
的个位数字是6,JXND(觉醒年代)的理解是正确的;
,,且
,故QGYW(强国有我)的理解是正确的;
故答案为:DDDD.
【点睛】本题考查了乘方的含义,幂的乘方的逆用等,熟练掌握乘方的含义以及乘方的运算法则是解题的关键.
三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)
【新考法】 数学与实际生活——游戏中的数学
17.如图,佳佳玩一个摸球计算游戏,在一个密闭的容器中放入五个小球,小球分别标有如图所示的数(x为正整数);现从容器中摸取小球,规定:若摸取到白色球,就加上球上的数:若摸到灰色球,就减去球上的数.
(1)若佳佳摸取到如下两个小球,请计算出结果;
(2)佳佳摸出全部的五个球,若计算结果为3,求出x的值.
【答案】(1)
(2)x的值为
【分析】(1)由题意得,,计算求解即可;
(2)由题意得,,计算求解即可.
【详解】(1)解:由题意得,,
∴结果为3;
(2)解:由题意得,,
∴,解得,
∴x的值为.
【点睛】本题考查了根据二次根式的性质化简,零指数幂,负整数指数幂,绝对值,解一元一次方程.解题的关键在于根据题意列方程并正确的计算求解.
18.【原创题】根据这条性质,解答下列问题:
(1)当________时,有最小值,此时最小值为________;
(2)已知,互为相反数,且,,求的值.
【答案】(1);
(2)/
【分析】(1)根据,可知,即最小值为,此时,解出即可;
(2)根据,互为相反数,可知,再去绝对值计算即可.
【详解】(1)解:∵,
∴当时,有最小值,
∴,
故答案为:;.
(2)解:∵,互为相反数,
∴,
又∵,,
∴
.
【点睛】本题考查了绝对值的非负性,整式的绝对值的求解,对绝对值性质的理解和掌握是解答本题的关键.
19.发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证:如,为偶数,请把10的一半表示为两个正整数的平方和.探究:设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.
【答案】验证:;论证见解析
【分析】通过观察分析验证10的一半为5,;将m和n代入发现中验证即可证明.
【详解】证明:验证:10的一半为5,;
设“发现”中的两个已知正整数为m,n,
∴,其中为偶数,
且其一半正好是两个正整数m和n的平方和,
∴“发现”中的结论正确.
【点睛】本题考查列代数式,根据题目要求列出代数式是解答本题的关键.
20.(1)计算:.
(2)化简求值:,其中.
【答案】(1);(2).
【分析】(1)先化简二次根式、特殊角的正切三角函数、化简绝对值、零指数幂、积的乘方的逆用,再计算实数的混合运算即可得;
(2)先计算分式的加法运算,再根据得出代入求值即可得.
【详解】解:(1)原式,
,
;
(2)原式,
,
,
,
,
∵,
∴,
∴原式.
【点睛】本题考查了化简二次根式、特殊角的正切三角函数、零指数幂、分式的化简求值等知识点,熟练掌握各运算法则是解题关键.
21.已知数轴上有两个点A:-3,B:1.
(1)求线段AB的长;
(2)若,且m
相关试卷
这是一份2024年中考数学一轮复习真题测试(提升卷)第一章 数与式(2份打包,原卷版+解析版),文件包含2024年中考数学一轮复习真题测试提升卷第一章数与式原卷版pdf、2024年中考数学一轮复习真题测试提升卷第一章数与式解析版pdf等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
这是一份中考数学一轮复习常考题型突破练习专题01 有理数(2份打包,原卷版+解析版),文件包含中考数学一轮复习常考题型突破练习专题01有理数原卷版doc、中考数学一轮复习常考题型突破练习专题01有理数解析版doc等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
这是一份初中数学中考复习 专题01 数与式(原卷版),共3页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。