所属成套资源:2025年中考数学一轮复习精品讲义 (2份,原卷版+解析版)
2025年中考数学一轮复习精品讲义第23讲 特殊四边形-矩形(2份,原卷版+解析版)
展开
这是一份2025年中考数学一轮复习精品讲义第23讲 特殊四边形-矩形(2份,原卷版+解析版),文件包含2025年中考数学一轮复习精品讲义第23讲特殊四边形-矩形原卷版docx、2025年中考数学一轮复习精品讲义第23讲特殊四边形-矩形解析版docx等2份试卷配套教学资源,其中试卷共170页, 欢迎下载使用。
TOC \ "1-3" \n \h \z \u \l "_Tc156858530" \l "_Tc156807534" 一、考情分析
二、知识建构
\l "_Tc156858531" 考点一 矩形的性质与判定
\l "_Tc156858532" 题型01 利用矩形的性质求角度
\l "_Tc156858533" 题型02 利用矩形的性质求线段长
\l "_Tc156858534" 题型03 利用矩形的性质求面积
\l "_Tc156858535" 题型04 求矩形在坐标系中的坐标
\l "_Tc156858536" 题型05 根据矩形的性质证明
\l "_Tc156858537" 题型06 矩形的判定定理的理解
\l "_Tc156858538" 题型07 添加一个条件使四边形是矩形
\l "_Tc156858539" 题型08 证明四边形是矩形
\l "_Tc156858540" 题型09 根据矩形的性质与判定求角度
\l "_Tc156858541" 题型10 根据矩形的性质与判定求线段长
\l "_Tc156858542" 题型11 根据矩形的性质与判定求面积
\l "_Tc156858543" 题型12 根据矩形的性质与判定解决多结论问题
\l "_Tc156858544" 题型13 与矩形有关的新定义问题
\l "_Tc156858545" 题型14 与矩形有关的规律探究问题
\l "_Tc156858546" 题型15 与矩形有关的动点问题
\l "_Tc156858547" 题型16 矩形与一次函数综合
\l "_Tc156858548" 题型17 矩形与反比例函数综合
\l "_Tc156858549" 题型18 矩形与二次函数综合
\l "_Tc156858550" 考点二 矩形的折叠问题
\l "_Tc156858551" 题型01 与矩形有关的折叠问题
\l "_Tc156858552" 类型一 沿对角线翻折(模型一)
\l "_Tc156858553" 类型二 将矩形短边顶点翻折到对角线上(模型二)
\l "_Tc156858554" 类型三 将矩形短边顶点翻折到长边上(模型三)
\l "_Tc156858555" 类型四 矩形短边沿折痕翻折(模型四)
\l "_Tc156858556" 类型五 通过翻折将矩形两个顶点重合(模型五)
\l "_Tc156858557" 类型六 将矩形短边顶点翻折到对称轴上(模型六)
\l "_Tc156858558" 类型七 将矩形翻折使其一个顶点落在一边上(模型七)
\l "_Tc156858559" 类型八 其它
考点一 矩形的性质与判定
矩形的定义:有一个角是直角的平行四边形叫做矩形.
矩形的性质:1)矩形具有平行四边形的所有性质;
2)矩形的四个角都是直角;
3)对角线互相平分且相等;
4)矩形既是中心对称图形,也是轴对称图形.矩形的对称中心是矩形对角线的交点;矩形有两条对称轴,矩形的对称轴是过矩形对边中点的直线;矩形的对称轴过矩形的对称中心.
【推论】1)在直角三角形中斜边的中线,等于斜边的一半.
2)直角三角形中,30度角所对应的直角边等于斜边的一半.
矩形的判定:1) 有一个角是直角的平行四边形是矩形;
2)对角线相等的平行四边形是矩形;
3)有三个角是直角的四边形是矩形.
【解题思路】要证明一个四边形是矩形,首先要判断四边形是否为平行四边形,若是,则需要再证明对角线相等或有一个角是直角;若不易判断,则可通过证明有三个角是直角来直接证明.
1. 对于矩形的定义要注意两点:a.是平行四边形;b.有一个角是直角.
2. 定义说有一个角是直角的平行四边形才是矩形,不要错误地理解为有一个角是直角的四边形是矩形.
题型01 利用矩形的性质求角度
【例1】(2023·广东江门·统考二模)如图,在矩形ABCD中,对角线AC与BD相交于点O,已知∠BAC=35°,则∠BOC的度数是( )
A.65°B.70°C.75°D.80°
【变式1-1】(2022·安徽安庆·安庆市第二中学校考三模)如图,O是矩形ABCD的对角线交点,AE平分∠BAD,∠AOD=120°,∠AEO的度数为( )
A.10°B.15°C.25°D.30°
【变式1-2】(2023·山西大同·统考模拟预测)翻花绳是中国民间流传的儿童游戏,在中国不同的地域,有不同的称法,如线翻花、翻花鼓、挑绷绷、解股等等,如图1是翻花绳的一种图案,可以抽象成如右图,在矩形ABCD中,IJ∥KL,EF∥GH,∠1=∠2=30°,∠3的度数为( ).
A.30°B.45°C.50°D.60°
【变式1-3】(2023·重庆渝中·重庆巴蜀中学校考三模)如图,矩形ABCD中,点E为CD边的中点,连接AE,过E作EF⊥AE交BC于点F,连接AF,若∠BAF=α,则∠EFC的度数为( )
A.αB.45°+α2C.45°-α2D.90°-α
【变式1-4】(2023·安徽合肥·校考三模)如图,a∥b,矩形ABCD的顶点B在直线a上,若∠1=34°,则∠2的度数为( )
A.34°B.46°C.56°D.66°
题型02 利用矩形的性质求线段长
【例2】(2022·安徽·合肥38中校考模拟预测)如图,矩形ABCD的对角线交于点O,EF经过点O且EF⊥BD,EF分别与AD,BC交于点E,F,若AB=2,BC=4,则AE等于( )
A.32B.2C.52D.3
【变式2-1】(2023·广西南宁·校考二模)在矩形ABCD中,AB=3,将AB绕点B顺时针旋转α(0°<α<90°)得到BE,连接DE,若DE的最小值为2,则BC的长为 .
【变式2-2】(2023·海南儋州·海南华侨中学校联考模拟预测)如图,在矩形ABCD中,AB=3,AD=4,点E为对角线BD上一点,连接AE,过点E作EF⊥AE交BC于点F.连接AF交BE于点O,若AB=AE,则线段AF与BD的位置关系为 ;BF的长为 .
【变式2-3】(2023·浙江宁波·校考一模)如图,矩形ABCD的两条对角线AC,BD相交于点O,OE⊥AB,垂足为E,F是OC的中点,连接EF交OB于点P,那么OPPB= .
【变式2-4】(2022·陕西西安·高新一中校考模拟预测)如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AD、BC的中点,点P、Q在EF上.且满足PQ=2,则四边形APQB周长的最小值为 .
题型03 利用矩形的性质求面积
【例3】(2023·福建泉州·统考模拟预测)如图,矩形ABCD中,E,F,G,H分别在AB,BC,CD,DA上,且AE=13AB,BF=13BC,CG=13CD,DH=13DA,若矩形ABCD面积为9,则四边形EFGH的面积为( )
A.3B.4C.5D.6
【变式3-1】(2023·陕西渭南·统考二模)如图,AC是矩形ABCD的对角线,延长AB至E,使得ABBE=56,连接CE,若矩形ABCD的面积为20,则△BCE的面积为( )
A.16B.14C.12D.10
【变式3-2】(2023·山西太原·统考二模)如图,在平面直角坐标系中,矩形OABC的顶点A和C分别落在y轴与x轴的正半轴上,OA=6,OC=8.若直线y=2x+b把矩形面积两等分,则b的值等于( )
A.5B.2C.-2D.-5
【变式3-3】(2023·江苏常州·校考一模)如图,现将四根木条钉成的矩形框ABCD变形为平行四边形木框A'B'C'D',且A'D'与CD相交于CD边的中点E,若AB=4,BC=5,则原矩形ABCD和平行四边形A'B'C'D'重叠部分的面积是 .
【变式3-4】(2023·湖南湘西·模拟预测)如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上一点,AP=2,连接BD,则图中阴影部分的面积为 .
题型04 求矩形在坐标系中的坐标
【例4】(2023·河南驻马店·驻马店市第二初级中学校考二模)如图,矩形ABCD的顶点A,B分别在x轴、y轴上,OB=4,OA=3,AD=10,将矩形ABCD绕点O顺时针旋转,每次旋转90°,则第2023次旋转结束时,点D的坐标为( )
A.(6,5)B.(5,6)C.(-6,-5)D.(-5,-6)
【变式4-1】(2023·天津河东·统考二模)如图,在平面直角坐标系中,矩形ABCD的顶点A在第一象限,B,D分别在y轴上,O是BD的中点.若AB=OB=23,则点C的坐标是( )
A.(3,3)B.-3,-3C.(3,3)D.(-3,-3)
【变式4-2】(2022·山东聊城·校联考一模)如图,已知矩形AOBC的顶点O在坐标原点,点A的坐标是(-2,1),点B的纵坐标是3,则点C的坐标是( )
A.-12,4B.-23,4C.-12,25D.-23,25
【变式4-3】(2021·湖南株洲·统考一模)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠,折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为10,8,则点E的坐标为( )
A.10,3B.10,5C.6,3D.4,3
【变式4-4】(2023·江西萍乡·统考模拟预测)如图,在平面直角坐标系中,直线y=-12x+2分别与x轴、y轴交于点A、B,点M在坐标轴上,点N在坐标平面内,若以A、B、M、N为顶点的四边形为矩形,则点N的坐标为 .
题型05 根据矩形的性质证明
【例5】(2023·湖南娄底·统考一模)如图,已知四边形ABCD是矩形,BE⊥AC于E,DF⊥AC于F,连接DE,BF.
(1)求证:四边形BEDF是平行四边形;
(2)若AB=3,BC=4,求BE的长;
(3)求证:BE2=AE⋅EC.
【变式5-1】(2023·江西吉安·校考模拟预测)如图,在矩形ABCD中,对角线AC和BD相交于点O,E是OA上一点,连接BE并延长至点F,使得∠ADF=∠ADB.
(1)求证:DF∥AC;
(2)若OE=1,求DF的长.
【变式5-2】(2023·黑龙江哈尔滨·统考模拟预测)已知,矩形ABCD中,E、F为对角线AC上两点,连接BE、DF,且BE⊥AC于E,DF⊥AC于F.
(1)如图1,求证:AE=CF;
(2)如图2,连接DE、BF,当∠ACD=2∠ABE时,请直接写出图中面积为△ABE面积3倍的所有三角形.
【变式5-3】(2023·安徽·统考模拟预测)如图,在矩形ABCD中,点E是AD的中点,连接EC,EB,过点B作EC的垂线交CD,CE于点F,G.设ADDC=m.
(1)求证:△BGC∽△BAE;
(2)如图1,连接AG,若∠GAB=30°,求m的值;
(3)如图2,若AG平分∠DAB,过点D作AG的垂线交EC,EB及CB的延长线分别于点P,H,M.若DH⋅CB=32,求EH的长.
题型06 矩形的判定定理的理解
【例6】(2023·河北沧州·模拟预测)如图为小亮在家找到的一块木板,他想检验这块木板的表面是不是矩形,但仅有一根足够长的细绳,现提供了如下两种检验方法:
下列说法正确的是( )
A.方法一可行,方法二不可行B.方法一不可行,方法二可行
C.方法一、二都可行D.方法一、二都不可行
【变式6-1】(2023·河北保定·统考一模)下列图形一定为矩形的是( )
A.B.C.D.
【变式6-2】(2022·江苏南京·统考一模)要判断一个四边形的窗框是否为矩形,可行的测量方案是( )
A.测量两组对边是否相等
B.测量对角线是否相等
C.测量对角线是否互相平分
D.测量对角线交点到四个顶点的距离是否都相等
【变式6-3】(2023·河北邯郸·统考一模)如图,在四边形ABCD中,给出部分数据,若添加一个数据后,四边形ABCD是矩形,则添加的数据是( )
A.CD=4B.CD=2C.OD=2D.OD=4
题型07 添加一个条件使四边形是矩形
【例7】(2023·湖南常德·统考模拟预测)如图,在▱ABCD中,M、N是BD上的两点,BM=DN,连接AM、MC、CN、NA.请你添加一个条件 ,使得四边形AMCN是矩形.
【变式7-1】(2022·黑龙江佳木斯·统考一模)如图,▱ABCD的对角线AC,BD相交于点O,请你添加一个条件使▱ABCD成为矩形,这个条件可以是 .
【变式7-2】(2023·山西晋城·统考一模)如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F在AC上,且AE=CF,连接BE,ED,DF,FB.若添加一个条件使四边形BEDF是矩形,则该条件可以是 .(填写一个即可)
题型08 证明四边形是矩形
【例8】(2023·广东梅州·统考一模)如图,四边形ABCD中,对角线AC,BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.
(1)求证:四边形ABCD是矩形;
(2)若∠AOB:∠ODC=6:7,求∠ADO的度数.
【变式8-1】(2022·山东滨州·校考一模)如图,点C是BE的中点,四边形ABCD是平行四边形.
(1)求证:四边形ACED是平行四边形;
(2)如果AB=AE,求证:四边形ACED是矩形.
【变式8-2】(2022·广东深圳·统考一模)如图,等腰△ABC中,AB=AC,AD⊥BC交BC于D点,E点是AB的中点,分别过D,E两点作线段AC的垂线,垂足分别为G,F两点.
(1)求证:四边形DEFG为矩形;
(2)若AB=10,EF=4,求CG的长.
题型09 根据矩形的性质与判定求角度
【例9】(2021·河北唐山·统考二模)将矩形ABCD绕点A顺时针旋转α0°0的图象经过D,E两点
(1)请用含k的式子表示点D,C,E的坐标:点D________,点C________,点E________;
(2)利用(1)的结论,求反比例函数的解析式;
(3)连接OD,OE,DE,求△ODE的面积
【变式17-4】(2023·山东济南·统考二模)如图,一次函数y=12x+a的图象与反比例函数y=kxx>0的图象交于点A(4,3),与y轴交于点B.
(1)求a,k的值;
(2)点C在反比例函数图象上,直线CA与x轴交于点D,AC=AD,连接CB,求△ABC的面积;
(3)点E在x轴上,点F是坐标系内一点,当四边形AEBF为矩形时,求点E的坐标.
【变式17-5】(2023·河南南阳·校考三模)如图,平面直角坐标系中,某图形W由线段AB,BC,DE,EF,AF和反比例函数图象的一段CD构成,其中,A-4,0,B4,0,∠FAB=∠CBA=90°,DE=3,AF=BC=1,DE∥x轴且点E的纵坐标为4,设直线EF的解析式为y=ax+b,双曲线CD的解析式为y=kx.点P为双曲线CD上一个动点,过点P作PG⊥y,垂足为G,交EF于点Q,以PQ为边在图形W内部作矩形PQNM,MN在x轴上.
(1)求直线EF和双曲线CD的解析式;
(2)若GO分矩形PQNM的面积比为2:1,求出点P的坐标.
题型18 矩形与二次函数综合
【例18】(2023·江苏无锡·统考一模)如图,已知二次函数y=x2+mx+8的图像交y轴于点A,作AB平行于x轴,交函数图像于另一点B(点B在第一象限).作BC垂直于x轴,垂足为C,点D在BC上,且CD=13BD.点E是线段AB上的动点(B点除外),将△DBE沿DE翻折得到△DB'E.
(1)当∠BED=60°时,若点B'到y轴的距离为3,求此时二次函数的表达式;
(2)若点E在AB上有且只有一个位置,使得点B'到x轴的距离为3,求m的取值范围.
【变式18-1】(2023·安徽黄山·校考模拟预测)如图,若二次函数y=ax2+bx+4的图象与x轴交于点A-1,0、B4,0,与y轴交于点C,连接BC.
(1)求该二次函数的解析式;
(2)若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在请求出点K的坐标;若不存在,请说明理由.
【变式18-2】(2021·吉林延边·校考一模)如图,二次函数y=-x2 +2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.
(1)求m的值;
(2)求点B的坐标;
(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),且S△ABD=S△ABC,求点D的坐标;
(4)若点P在直线AC上,点Q是平面内一点,是否存在点Q,使以点A、B、P、Q为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
【变式18-3】(2021·江苏苏州·统考一模)对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=tx2-3x+2+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图像记作抛物线E,现有点A(2,0)和抛物线E上的点B-1,n,请完成下列任务;
【尝试】判断点A是否在抛物线E上.
【发现】对于t取任何不为零的实数,抛物线E总过定点,坐标为_______.
【应用】以AB为边作矩形ABCD,使得其中一个顶点落在y轴上:若抛物线E经过A,B,C,D其中的三点,求出所有符合条件的t的值.
考点二 矩形的折叠问题
矩形的折叠问题的常用解题思路:
1)对折叠前后的图形进行细致分析,折叠后的图形与原图形全等,对应边、对应角分别相等,找出各相等的边或角;
2)折痕可看作角平分线(对称线段所在的直线与折痕的夹角相等).
3) 折痕可看作垂直平分线(互相重合的两点之间的连线被折痕垂直平分).
4)选择一个直角三角形(不找以折痕为边长的直角三角形),利用未知数表示其它直角三角形三边,通过勾股定理/相似三角形知识求解.
模型一: 思路:
模型二: 思路:
模型三: 思路:
尝试借助一线三垂直知识利用相似的方法求解
模型四: 思路:
模型五: 思路:
模型六:点M,点N分别为DC,AB中点 思路:
模型七:点A’为BC中点 思路: 过点F作FH⊥AE,垂足为点H
设AE=A’E=x,则BE=8-x
由勾股定理解得x=174 ∴BE=154
由于△EBA’∽△A’CG∽△FD’G
∴A’G=3415 CG=1615 GD’=2615
DF=D’F=AH=134 HE=1 EF=17
题型01 与矩形有关的折叠问题
类型一 沿对角线翻折(模型一)
【例1】(2023·陕西·模拟预测)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE交AB于点F,则cs∠ADF的值为( )
A.817B.715C.1517D.815
【变式1-1】(2023·山东淄博·统考一模)如图,将矩形ABCD沿对角线AC折叠,点B的对应点为E,AE与CD交于点F.
(1)求证:△DAF≌△ECF;
(2)若∠FCE=40°,求∠CAB的度数.
【变式1-2】(2018·广东河源·校考一模)如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.
(1)求证:△AFE≌△CDF;
(2)若AB=4,BC=8,求图中阴影部分的面积.
类型二 将矩形短边顶点翻折到对角线上(模型二)
【例2】(2023·山东青岛·青岛大学附属中学校考二模)如图,已知BD是矩形ABCD的对角线,AB=6,BC=8,点E,F分别在边AD,BC上,连结BE,DF.将△ABE沿BE翻折,将△DCF沿DF翻折,若翻折后,点A,C分别落在对角线BD上的点G,H处,连结GF.则下列结论不正确的是( )
A.BD=10B.HG=2C.EG∥FHD.GF⊥BC
【变式2-1】(2021·浙江衢州·校考一模)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF= ,BE= .
【变式2-2】(2018·湖南娄底·统考一模)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A'处,则AE的长为 .
【变式2-3】(2019·湖南株洲·统考一模)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为 .
类型三 将矩形短边顶点翻折到长边上(模型三)
【例3】(2023·河北石家庄·校联考一模)如图,在矩形ABCD中,点M在AB边上,把△BCM沿直线CM折叠,使点B落在AD边上的点E处,连接EC,过点B作BF⊥EC,垂足为F,若CD=1,CF=2,则线段AE的长为( )
A.5-2B.3-1C.13D.12
【变式3-1】(2020·河南·模拟预测)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( )
A.12B.920C.25D.13
【变式3-2】(2022·四川达州·统考一模)如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把△CDE沿DE翻折,点C 恰好落在AB边上的F处,则CE的长是( )
A.1B.43C.32D.53
【变式3-3】(2021·四川广安·校考二模)在矩形ABCD的CD边上取一点E,将ΔBCE沿BE翻折,使点C恰好落在AD边上点F处.
(1)如图1,若BC=2BA,求∠CBE的度数;
(2)如图2,当AB=5,且AF⋅FD=10时,求BC的长;
(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF=AN+FD时,求ABBC出的值.
类型四 矩形短边沿折痕翻折(模型四)
【例4】(2021·山东聊城·统考一模)如图,在矩形ABCD中,AB=5,BC=6,点M,N分别在AD,BC上,且AM=BN,AD=3AM,E为BC边上一动点,连接DE,将△DCE沿DE所在直线折叠得到△DC′E,当C′点恰好落在线段MN上时,CE的长为( )
A.52或2B.52C.32或2D.32
【变式4-1】(2023·广西·模拟预测)如图,在矩形纸片ABCD中,点E在BC边上,将△CDE沿DE翻折得到△FDE,点F落在AE上.若CE=3cm,AF=2EF,则AB= cm.
【变式4-2】(2019·黑龙江大庆·中考模拟)如图,在矩形ABCD中, AB=3,BC=2,点E为线段AB上的动点,将△CBE沿 CE折叠,使点B落在矩形内点F处,则AF的最小值为 .
【变式4-3】(2021·黑龙江佳木斯·统考二模)矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其它线段,当图中存在30∘角时,AE的长为 厘米.
类型五 通过翻折将矩形两个顶点重合(模型五)
【例5】(2022·江苏无锡·校联考一模)如图,在平面直角坐标系中,C,A分别为x轴、y轴正半轴上的点,以OA,OC为边,在第一象限内作矩形OABC,且S矩形OABC=22,将矩形OABC翻折,使点B与原点O重合,折痕为MN,点C的对应点C'落在第四象限,过M点的反比例函数y=kx(k≠0)的图象恰好过MN的中点,则k的值为 ,点C'的坐标为 .
【变式5-1】(2023·江苏徐州·统考一模)如图,将矩形纸片ABCD折叠,使点B与点D重合,点A落在点P处,折痕为EF.
(1)求证:△PDE≌△CDF;
(2)若CD=4cm,EF=5cm,求BC的长.
【变式5-2】(2022·江苏徐州·模拟预测)如图,将一张长方形纸片ABCD沿E折叠,使C,A两点重合.点D落在点G处.已知AB=4,BC=8.
(1)求证:ΔAEF是等腰三角形;
(2)求线段FD的长.
类型六 将矩形短边顶点翻折到对称轴上(模型六)
【例6】(2023·河南信阳·校考三模)如图,在矩形ABCD中,AB=6,BC=10,将矩形翻折,使边AD与边BC重合,展开后得到折痕MN,E是AD的中点,动点F从点D出发,沿D→C→B的方向在DC和CB上运动,将矩形沿EF翻折,点D的对应点为G,点C的对应点为C',当点G恰好落在MN上时,点F运动的距离为 .
【变式6-1】(2022·福建福州·福建省福州屏东中学校考一模)如图,在矩形ABCD中,E、F分别为AD、BC的中点,将△ADM沿AM所在直线折叠,使点D落到EF上点G处,已知BC=4,则线段EG的长度为 .
【变式6-2】(2023·河南南阳·校联考一模)【初步探究】
(1)把矩形纸片ABCD如图①折叠,当点B的对应点B'在MN的中点时,填空: △EB'M △B'AN(“≌”或“∽”).
【类比探究】
(2)如图②,当点B的对应点B'为MN上的任意一点时,请判断(1)中结论是否成立?如果成立,请写出证明过程;如果不成立,请说明理由.
【问题解决】
(3)在矩形ABCD中,AB=4,BC=6,点E为BC中点,点P为线段AB上一个动点,连接EP,将△BPE沿PE折叠得到△B'PE,连接DE,DB',当△EB'D为直角三角形时,BP的长为 .
【变式6-3】(2021·甘肃兰州·统考模拟预测)[问题解决]
(1)如图①,在矩形纸片ABCD中,E是BC边的中点,将△ABE沿AE折叠得到△AFE,点B的对应点F恰好落在AD边上,请你判断四边形ABEF的形状,并说明理由;
[问题探索]
(2)如图②,在矩形纸片ABCD中,E是BC边的中点,将△ABE沿AE折叠得到△AFE,点B的对应点F在矩形纸片ABCD的内部,延长AF交CD于点G,求证:FG=CG;
[拓展应用]
(3)如图③,在正方形纸片ABCD中,E是BC边的中点,将△ABE沿AE折叠得到△AFE,点B的对应点F落在正方形纸片ABCD内,延长AF交CD于点G,若AB=4,求线段FG的长.
类型七 将矩形翻折使其一个顶点落在一边上(模型七)
【例7】(2022·辽宁沈阳·沈阳市第七中学校考模拟预测)如图,在矩形纸片ABCD中,AB=7,BC=9,M是BC上的点,且CM=2.将矩形纸片ABCD沿过点M的直线折叠,使点D落在AB上的点P处,点C落在点C'处,折痕为MN,则线段PA的长是( )
A.4B.5C.6D.25
【变式7-1】(2023·四川巴中·校考一模)如图,在矩形ABCD中ABBC=23.动点M从点A出发,沿边AD向点D匀速运动,动点N从点B出发,沿边BC向点C匀速运动,连接MN.动点M,N同时出发,点M运动的速度为v1,点N运动的速度为v2,且v1AD,将矩形纸片沿过点D的直线折叠,使点A落在边DC上,点A的对应点为A',折痕为DE,点E在AB上.求证:四边形AEA'D是正方形.
【规律探索】(2)由【问题解决】可知,图①中的ΔA'DE为等腰三角形.现将图①中的点A'沿DC向右平移至点Q处(点Q在点C的左侧),如图②,折痕为PF,点F在DC上,点P在AB上,那么ΔPQF还是等腰三角形吗?请说明理由.
【结论应用】(3)在图②中,当QC=QP时,将矩形纸片继续折叠如图③,使点C与点P重合,折痕为QG,点G在AB上.要使四边形PGQF为菱形,则ADAB=___________.考点要求
新课标要求
命题预测
矩形的性质与判定
探索并证明矩形的性质定理.
探索并证明矩形的判定定理.
矩形是特殊平行四边形中比较重要的图形,也是几何图形中难度比较大的几个图形之一,年年都会考查,预计2024年各地中考还将出现. 其中,矩形还经常成为综合压轴题的问题背景来考察,而矩形其他出题类型还有选择、填空题的压轴题,难度都比较大,需要加以重视.解答题中考查特殊四边形的性质和判定,一般和三角形全等、解直角三角形、二次函数、动态问题综合应用的可能性比较大.
矩形的折叠问题
相关试卷
这是一份2025年中考数学一轮复习精品讲义第24讲 特殊四边形-菱形(2份,原卷版+解析版),文件包含2025年中考数学一轮复习精品讲义第24讲特殊四边形-菱形原卷版docx、2025年中考数学一轮复习精品讲义第24讲特殊四边形-菱形解析版docx等2份试卷配套教学资源,其中试卷共139页, 欢迎下载使用。
这是一份2025年中考数学一轮复习精品讲义第01讲 实数(2份,原卷版+解析版),文件包含2025年中考数学一轮复习精品讲义第01讲实数原卷版docx、2025年中考数学一轮复习精品讲义第01讲实数解析版docx等2份试卷配套教学资源,其中试卷共77页, 欢迎下载使用。
这是一份中考数学一轮复习满分突破(全国通用)专题24特殊的平行四边形-矩形(原卷版+解析),共64页。