山东省济宁市兖州区2024-2025学年高二上学期期中质量检测数学试题
展开
这是一份山东省济宁市兖州区2024-2025学年高二上学期期中质量检测数学试题,文件包含山东省济宁市兖州区2024-2025学年高二上学期期中考试数学试题pdf、高二数学答案docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
三填空题答案.
12. 13. 14.
四解答题答案:.
15解:(1)设“甲胜且编号的和为6”为事件.
甲编号为,乙编号为,表示一个基本事件,
则两人摸球结果包括(1,2),(1,3),…,(1,5),(2,1),(2,2),…,(5,4),(5,5)共25个基本事件; 分
包括的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1)共5个.分
∴.甲胜且编号的和为6的事件发生的概率为.分
(2)这种游戏不公平.
设“甲胜”为事件,“乙胜”为事件.甲胜即两个编号的和为偶数所包含基本事件数为以下13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).分
所以甲胜的概率为,分
乙胜的概率为,分
∵,∴这种游戏规则不公平.分
16(1)当直线斜率不存在时,
由过得,满足到的距离为3, 分
当直线斜率存在时,设直线方程为即,
点到直线的距离为,解得.
此时直线的方程为即,
综上所述,所求的直线方程为或分
(2)若直线分别与轴,轴的负半轴交于两点,
则设直线为,,则,分 .
分
,当且仅当时取等号, 分
故面积的最小值为12,此时直线l的方程为分
17.(1)连结,交于点,连结,
点是的中点,点是的中点,分
所以,平面,平面,
所以平面;分
(2)如图,以向量,,为轴的正方向建立空间直角坐标系分
,,,
则,,
设平面的法向量,
则,令,,,
所以平面的法向量,分
,,,
,分
设直线与平面的夹角为,
则,
解得或,分
又,
则或分
18.(1)设,动点,
由中点的坐标公式解得,,分
又在圆上,可得,即可得,
∴点的轨迹方程是.分
(2)设.则,
,,分
所以:
,
当且仅当,即时,等号成立,
所以最小值为.分
(3)如下图所示:
联立方程组,得,.
设,,则,分
∴,
故的值为定值,且定值为.分
19.(1)由,,
知,,
所以,所以;分
(2)设,,分别为与,,同方向的单位向量,
则,,,分
①,
. 分
②因为,所以,
则,分
∵, .
∴,分
,
所以与的夹角的余弦值为分
题号
1
2
3
4
5
6
7
8
9
10
11
答案
B
D
C
D
A
C
A
D
CD
BD
ACD
相关试卷
这是一份山东省济宁市兖州区2024-2025学年高三上学期期中质量检测数学试题,文件包含山东省济宁市兖州区2024-2025学年高三上学期期中考试数学试题pdf、高三数学答案docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
这是一份山东省济宁市兖州区2024-2025学年高一上学期期中质量检测数学试题,文件包含山东省济宁市兖州区2024-2025学年高一上学期期中考试数学试题pdf、高一数学答案2docx等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。
这是一份山东省济宁市兖州区2023-2024学年高二下学期期中质量检测数学试题(原卷版+解析版),文件包含山东省济宁市兖州区2023-2024学年高二下学期期中质量检测数学试题原卷版docx、山东省济宁市兖州区2023-2024学年高二下学期期中质量检测数学试题解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。