年终活动
搜索
    上传资料 赚现金

    精品解析:重庆市第十八中学2024-2025学年高一上学期期中考试数学试题

    资料中包含下列文件,点击文件名可预览资料内容
    • 解析
      精品解析:重庆市第十八中学2024-2025学年高一上学期期中考试数学试题(原卷版).docx
    • 解析
      精品解析:重庆市第十八中学2024-2025学年高一上学期期中考试数学试题(解析版).docx
    精品解析:重庆市第十八中学2024-2025学年高一上学期期中考试数学试题(原卷版)第1页
    精品解析:重庆市第十八中学2024-2025学年高一上学期期中考试数学试题(原卷版)第2页
    精品解析:重庆市第十八中学2024-2025学年高一上学期期中考试数学试题(解析版)第1页
    精品解析:重庆市第十八中学2024-2025学年高一上学期期中考试数学试题(解析版)第2页
    精品解析:重庆市第十八中学2024-2025学年高一上学期期中考试数学试题(解析版)第3页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    精品解析:重庆市第十八中学2024-2025学年高一上学期期中考试数学试题

    展开

    这是一份精品解析:重庆市第十八中学2024-2025学年高一上学期期中考试数学试题,文件包含精品解析重庆市第十八中学2024-2025学年高一上学期期中考试数学试题原卷版docx、精品解析重庆市第十八中学2024-2025学年高一上学期期中考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
    考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页
    注意事项:
    1.答题前,考生务必将自己的姓名、准考证号、班级、学校在答题卡上填写清楚.
    2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试卷上作答无效.
    3.考试结束后,请将答题卡交回,试卷自行保存.
    一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 命题“,”的否定是( )
    A. ,B. ,
    C. ,D. ,
    【答案】B
    【解析】
    【分析】根据全称命题的否定为特称命题判断即可.
    【详解】命题“,”的否定是“,”.
    故选:B
    2. 设全集,集合,,则( )
    A. B.
    C. D.
    【答案】C
    【解析】
    【分析】利用集合并补运算求集合.
    【详解】由题设,故.
    故选:C
    3. 已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最小值为”的( )
    A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件
    【答案】A
    【解析】
    【分析】根据单调性定义得到充分性,举反例得到不必要,得到答案.
    【详解】若函数在上单调递增,则函数在上的最小值为,充分性;
    函数在上的最小值为,则不一定有函数在上单调递增,如在上不单调,最小值为,不必要.
    故选:A.
    4. 下列函数中,值域为的是( )
    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】根据二次函数、分式型函数等单调性及基本不等式求各函数在给定区间上的值域.
    【详解】A:在上递减,在上递增,值域为,错;
    B:在上递增,值域为,错;
    C:在取等号,结合对勾函数性质知,在上值域为,错;
    D:在上递增,故值域为,对.
    故选:D
    5. 已知幂函数,且,则下列选项中正确的是( )
    A. B.
    C. D.
    【答案】A
    【解析】
    【分析】由不等式性质比较相关自变量大小,根据幂函数的单调性比较函数值大小
    【详解】由,则,又在上单调递增,
    所以.
    故选:A
    6. 给定函数.,,,用表示,中的较小者,记为,则的最大值为( )
    A. -6B. 2C. 4D. 6
    【答案】C
    【解析】
    【分析】先利用条件可求得,进而可求的最大值.
    【详解】由,得,解得或,
    由,得,解得,
    又,
    所以,
    当时,,所以,
    当时,,所以,
    当时,,所以,
    所以的最大值为.
    故选:C.
    7. 函数满足:,,,当时,,,则的解集为( )
    A. B.
    C. D.
    【答案】B
    【解析】
    【分析】根据条件判断函数的奇偶性和单调性,作出示意图,结合图象利用符号法解不等式即可.
    【详解】因为,所以在上为偶函数,
    又,当时,,所以在上单调递增,
    又因为,所以,示意图如图:
    由图象可知:时,,,则;
    时,,,则;
    时,,,则;
    时,,,则;
    时,,,则.
    综上,的解集为.
    故选:B.
    8. “定义在上的函数为奇函数”的充要条件为“的图像关于坐标原点对称”,该结论可以推广为“为奇函数”的充要条件为“的图像关于对称”,则函数的对称中心为( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】根据题意,由奇函数的定义列出方程,代入计算即可得到结果.
    【详解】,
    由奇函数的定义可知,,所以,
    所以有,
    整理得:,所以有,
    解得:,,所以的对称中心为.
    故选:A.
    二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.
    9. 下列各组函数表示同一个函数的是( )
    A. ,B. ,
    C. ,D. ,
    【答案】AD
    【解析】
    【分析】根据“定义域和对应关系相同即为同一函数”逐项进行判断,就可以得到答案.
    【详解】对于A,的定义域为,定义域为,
    所以与定义域相同,对应关系相同,所以与同一个函数,故A正确;
    对于B,的定义域为,的定义域为,
    所以与定义域相同,对应关系不相同,所以与不是同一个函数,故B不正确;
    对于C,的定义域为,的定义域为,
    所以与定义域不相同,对应关系相同,所以与不是同一个函数,故C不正确;
    对于的定义域为,的定义域为,
    所以与定义域相同,对应关系相同,所以与同一个函数,故D正确.
    故选:AD.
    10. 下列说法中正确的是( )
    A. 若,则B. 若,则
    C. 若,,则D. 若,则
    【答案】BD
    【解析】
    【分析】对A,举反例判断即可;对B,根据分式的性质判断即可;对C,举反例判断即可;对D,根据不等式性质判断即可.
    【详解】对A,若,则,故A错误;
    对B,若,则,故,故B正确;
    对C,若,,则,故C错误;
    对D,若,则,,即,故D正确.
    故选:BD
    11. 已知是定义在上的偶函数,是定义在上的奇函数,且,在上单调递减,则下列说法正确的是( )
    A. B.
    C. D.
    【答案】ABC
    【解析】
    【分析】根据题意得出,在上的单调性,结合函数的单调性,逐项判断,即可求解.
    【详解】因为是定义在上的偶函数,是定义在上的奇函数,且两函数在上单调递减,
    所以在上单调递减,在上单调递增,在上单调递减,因为是定义在上的奇函数,所以.
    对于A,由在上单调递减,得g−1>g2,故,故A正确;
    对于B,,因为在上单调递增,所以,又在上单调递减,故gf−1=gf1>gf2,故B正确;
    对于C选项,因为在上单调递减,故0=g0>g1>g2,又在上单调递减,故,故C正确;
    对于D选项,在上单调递增,故,但不确定的大小关系,无法比较,故D错误.
    故选:ABC
    三、填空题:本题共3小题,每小题5分,共15分.
    12. 已知是定义在上的奇函数,当时,,则__________.
    【答案】
    【解析】
    【分析】利用函数为奇函数可得,利用解析式可求得即可.
    【详解】因为是定义在上奇函数,所以.
    故答案为:.
    13. 已知函数,若,则实数的取值范围是__________.
    【答案】
    【解析】
    【分析】通过分析在与两个区间段内的单调性知,在上单调递增,将抽象不等式转化为具体不等式,即可求出实数的取值范围.
    【详解】因为时,单调递增,且,
    因为时,单调递增,且,
    所以在上单调递增,
    因为f5a>f6−a2,所以,
    所以或,所以实数的取值范围是.
    故答案为:.
    14. 若正实数,满足,则的最小值是__________.
    【答案】4
    【解析】
    【分析】设,得到,假设得到矛盾,即有,结合且,将目标式化为,最后应用基本不等式求最小值.
    【详解】设,则,即,
    若,则,而,仅当时等号成立,
    所以,显然与矛盾,所以,
    由上,由,即,则,
    所以
    ,当且仅当时等号成立,
    所以,,即,时,目标式最小值为4.
    故答案为:4
    【点睛】关键点点睛:应用换元法,结合基本不等式得到,再由将目标式整理只为含的表达式为关键.
    四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.
    15. 已知集合,.
    (1)若,求;
    (2)若是的必要不充分条件,求的取值范围.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)求解分式不等式可得,再代入求解交集即可;
    (2)根据题意可得,再根据是否为空集与集合区间端点列不等式求解即可.
    【小问1详解】
    则且,解得,故.
    若则,
    【小问2详解】
    若是的必要不充分条件则,
    若,则,解得,
    若,则1−2m>−32+m≤41−2m≤2+m且等号不同时成立,解得.
    综上有的取值范围为
    16. 已知是上的奇函数.
    (1)求的值,并用定义证明:在上单调递减;
    (2)若在上恒成立,求的取值范围.
    【答案】(1),证明见解析
    (2)
    【解析】
    【分析】(1)根据奇函数性质,结合已知条件可解;根据单调性的证明步骤逐步证明即可;
    (2)转化为在上恒成立,求在的最小值即可.
    【小问1详解】
    由题意可知:,得:,经验证得,当时,为奇函数;
    所以,对,不妨设,

    因为,所以,,
    则,即,
    因此在上单调递减.
    【小问2详解】
    在上恒成立,即在上恒成立,
    所以,
    因为在上单调递减,且为上奇函数,
    所以为上单调递减,
    所以,所以.
    17. 校本选修课是中学课程创新中的重要一环,某校生物组计划向学校申请面积为的矩形空地建造试验田,试验田为三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔,三块矩形区域的前、后与空地边沿各保留宽的通道,左、右两块矩形区域分别与相邻的左右边沿保留宽的通道,如图.设矩形空地长为,三块种植植物的矩形区域(如下图中阴影部分所示)的总面积为.

    (1)求关于的函数关系式:
    (2)求的最大值,及此时长的值.
    【答案】(1)
    (2)最大值为,此时长为
    【解析】
    【分析】(1)根据题意表示出空地宽为,再表示出关于的函数式;
    (2)根据基本不等式求解.
    【小问1详解】
    由题知空地宽为,则;
    【小问2详解】
    因为,所以,
    当且仅当时等号成立,所以,
    所以的最大值为,此时长为.
    18. 不动点原理是数学上一个重要的原理,也叫压缩映像原理,用初等数学可以简单的理解为:对于函数,若存在,使成立,则称为的不动点.已知二次函数
    (1)若时,讨论不动点的个数;
    (2)若,,为两个相异的不动点,且,,求的最小值.
    【答案】(1)答案见解析;
    (2).
    【解析】
    【分析】(1)根据题设可得,利用判别式讨论其根的个数,即可得答案;
    (2)由题设有有两个不等的正根,应用韦达定理代入目标式得到关于的表达式,最后应用基本不等式求最小值,注意取值条件.
    【小问1详解】
    由题设,令,整理得,
    所以,
    当或时,,此时有两个不同的不动点;
    当或时,,此时有一个不动点;
    当时,,此时没有不动点;
    【小问2详解】
    由题设,令,整理得,
    且,
    所以,,又,,则,


    当且仅当时等号成立,
    所以目标式最小值为.
    19. 已知函数对任意,,恒有,且当时,,.
    (1)证明:函数为奇函数;
    (2)求的值;
    (3),时,成立,求实数的取值范围.
    【答案】(1)证明见解析
    (2)
    (3)
    【解析】
    【分析】(1)通过赋值法及奇偶性的定义即可证明.
    (2)令得,再结合抽象函数法则化简求值即可.
    (3)先根据单调性的定义得在R上单调递减,然后利用恒成立法则把问题转化为在上恒成立,分情况讨论二次函数的对称轴,利用函数的单调性求得最值即可求解.
    【小问1详解】
    因为,都有,
    所以令,有,解得.
    令,有,
    所以,所以为奇函数.
    【小问2详解】
    令时,有,所以,
    .
    【小问3详解】
    不妨设,因为时,,所以,
    所以,所以在R上单调递减.
    因为在R上单调递减,所以时,,
    ,时,,
    即时,恒成立,
    即在上恒成立,又对称轴为,
    ①当,即时,在上单调递增,
    则,解得,此时无解;
    ②当,即时,,
    解得,此时;
    ③当,即时,在上单调递减,
    则,解得,此时无解;
    综上实数的取值范围为

    相关试卷

    精品解析:重庆市渝高中学2024-2025学年高一上学期期中考试数学试题:

    这是一份精品解析:重庆市渝高中学2024-2025学年高一上学期期中考试数学试题,文件包含精品解析重庆市渝高中学2024-2025学年高一上学期期中考试数学试题原卷版docx、精品解析重庆市渝高中学2024-2025学年高一上学期期中考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。

    精品解析:重庆市荣昌中学校2024-2025学年高二上学期11月期中考试数学试题:

    这是一份精品解析:重庆市荣昌中学校2024-2025学年高二上学期11月期中考试数学试题,文件包含精品解析重庆市荣昌中学校2024-2025学年高二上学期11月期中考试数学试题原卷版docx、精品解析重庆市荣昌中学校2024-2025学年高二上学期11月期中考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    重庆市求精中学2024-2025学年高一上学期期中考试数学试题:

    这是一份重庆市求精中学2024-2025学年高一上学期期中考试数学试题,共2页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map