鲁教版(五四学制)(2024)九年级下册7 切线长定理精练
展开
这是一份鲁教版(五四学制)(2024)九年级下册7 切线长定理精练,共8页。
1.如图,⊙O是△ABC的内切圆,点D、E分别为边AB、AC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是( )
A.7B.8C.9D.16
2.如图PA、PB、CD分别切⊙O于A、B、E,∠APB=54°,则∠COD=( )
A.36°B.63°C.126°D.46°
3.如图,△ABC是一张周长为17cm的三角形的纸片,BC=5cm,⊙O是它的内切圆,小明准备用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为( )
A.12cm
B.7cm
C.6cm
D.随直线MN的变化而变化
4.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为( )
A.44B.42C.46D.47
5.如图,PA,PB与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=( )
A.B.2C.D.3
6.如图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=( )
A.B.C.D.
7.如图,一个菱形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿此菱形的四边做无滑动旋转,直至回到原出发位置时,这个圆共转了( )
A.6圈B.5圈C.4.5圈D.4圈
二.填空题(共5小题)
8.如图,PA,PB分别切⊙O于点A,B,点C是AB上一点,过C作⊙O的切线,交PA,PB于点D,E,若PA=6cm,则△PDE的周长是 cm.
9.如图,⊙O与△ABC的边AB、AC、BC分别相切于点D、E、F,如果AB=4,AC=5,AD=1,那么BC的长为 .
10.如图,切线PA、PB分别与⊙O相切于点A、B,切线EF与⊙O相切于点C,且分别交PA、PB于点E、F,若△PEF的周长为6,则线段PA的长为 .
11.如图,菱形ABCD,∠B=60°,AB=4,⊙O内切于菱形ABCD,则⊙O的半径为 .
12.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P= °.
三.解答题(共5小题)
13.如图,PA和PB是⊙O的两条切线,A,B是切点.C是弧AB上任意一点,过点C画⊙O的切线,分别交PA和PB于D,E两点,已知PA=PB=5cm,求△PDE的周长.
14.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:
(1)PA的长;
(2)∠COD的度数.
15.如图,∠APB=52°,PA、PB、DE都为⊙O的切线,切点分别为A、B、F,且PA=6.
(1)求△PDE的周长;
(2)求∠DOE的度数.
16.如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.
(1)求∠BAC的度数;
(2)当OA=2时,求AB的长.
17.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:
(1)∠BOC的度数;
(2)BE+CG的长;
(3)⊙O的半径.
答案
一.选择题(共7小题)
1.A
2.B
3.B
4.A
5.B
6.D
7.B
二.填空题(共5小题)
8.12cm
9.7
10.3.
11..
12.76
三.解答题(共5小题)
13.10cm.
14.(1)6;
(2)∵∠P=60°,
∴∠PCE+∠PDE=120°,
∴∠ACD+∠CDB=360°﹣120°=240°,
∵CA,CE是圆O的切线,
∴∠OCE=∠OCA=∠ACD;
同理:∠ODE=∠CDB,
∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,
∴∠COD=180﹣120°=60°.
15.解:(1)∵PA、PB、DE都为⊙O的切线,
∴DA=DF,EB=EF,PA=PB=6,
∴DE=DA+EB,
∴PE+PD+DE=PA+PB=12,
即△PDE的周长为12;
(2)连接OF,
∵PA、PB、DE分别切⊙O于A、B、F三点,
∴OB⊥PB,OA⊥PA,∠BOE=∠FOE=∠BOF,∠FOD=∠AOD=∠AOF,
∵∠APB=52°,
∴∠AOB=360°﹣90°﹣90°﹣52°=128°,
∴∠DOE=∠FOE+∠FOD=(∠BOF+∠AOF)=∠BOA=64°.
16.
解:(1)∵PA,PB是⊙O的切线,
∴AP=BP,
∵∠P=60°,
∴∠PAB=60°,
∵AC是⊙O的直径,
∴∠PAC=90°,
∴∠BAC=90°﹣60°=30°.
(2)连接OP,则在Rt△AOP中,OA=2,∠APO=30°,
∴OP=4,
由勾股定理得:,
∵AP=BP,∠APB=60°,
∴△APB是等边三角形,
∴.
17.
解:(1)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;
∵AB∥CD,
∴∠ABC+∠BCD=180°,
∴∠OBF+∠OCF=90°,
∴∠BOC=90°;
(2)由(1)知,∠BOC=90°.
∵OB=6cm,OC=8cm,
∴由勾股定理得到:BC==10cm,
∴BE+CG=BC=10cm.
(3)∵BC与⊙O相切于点F,
∴OF⊥BC,
∴S△OBC=OF×BC=OB×OC,即OF×10=×6×8.
∴OF=4.8cm.
相关试卷
这是一份鲁教版 (五四制)九年级下册7 切线长定理同步测试题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份冀教版九年级下册29.4 切线长定理当堂达标检测题,共7页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。
这是一份鲁教版 (五四制)九年级下册第五章 圆7 切线长定理同步达标检测题,共18页。