搜索
    上传资料 赚现金
    英语朗读宝

    【新课标大单元】浙教版数学八年级下册4.3中心对称 课件+教案+大单元整体教学设计

    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      4.3中心对称.pptx
    • 教案
      平行四边形大单元教学设计.doc
    • 练习
      4.3中心对称.docx
    4.3中心对称第1页
    4.3中心对称第2页
    4.3中心对称第3页
    4.3中心对称第4页
    4.3中心对称第5页
    4.3中心对称第6页
    4.3中心对称第7页
    4.3中心对称第8页
    平行四边形大单元教学设计第1页
    平行四边形大单元教学设计第2页
    平行四边形大单元教学设计第3页
    4.3中心对称第1页
    4.3中心对称第2页
    4.3中心对称第3页
    还剩22页未读, 继续阅读
    下载需要40学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙教版(2024)八年级下册4.3 中心对称完美版教学ppt课件

    展开

    这是一份浙教版(2024)八年级下册4.3 中心对称完美版教学ppt课件,共30页。PPT课件主要包含了教学目标,情境导入,探究新知,课堂练习,课堂总结,作业布置,知识技能类作业,必做题,选做题,综合实践类作业等内容,欢迎下载使用。
    《4.3中心对称》是“浙教版八年级数学(下)”第四章第三节的内容.本节课的主要内容是中心对称图形的概念和性质.要求学生了解平行四边形是中心对称图形,了解中心对称图形的性质.要求学生会作与已知图形关于已知点中心对称的图形,能够掌握坐标系中关于原点对称的点的特征.“中心对称图形”是“平移、翻折、旋转”三种基本几何变换中旋转的一种特殊情况,是用运动观点和思想研究图形位置变化或图形性质的数学问题,在教材中有着重要的地位.
    1.了解中心对称的概念.2.了解平行四边形是中心对称图形.3.了解中心对称图形的性质.4.会作与已知图形关于已知点中心对称的图形.5.掌握坐标系中关于原点对称的点的特征.
    你能在图案中找出一点,使图案绕该点旋转180°后仍和原图案重合吗?
    合作探究:如图,O是▱ABCD的对角线AC,BD的交点.以O为旋转中心,把▱ABCD按顺时针方向旋转 180° ,作出所得的图形.你发现了什么?请剪出图形动手试一试,观察旋转180°前后原图形和新图形的位置情况.
    如果一个图形绕着一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫对称中心.如右图的▱ABCD是中心对称图形,两条对角线的交点是它的对称中心.
    类似地,如果一个图形绕着一个点O旋转180°后,能够和另外一个图形互相重合,我们就称这两个图形关于点O成中心对称.如图1,△AOD绕点O旋转180°后与△COB重合,△AOD与△COB关于点O成中心对称.如图2,四边形ABCD绕点O旋转180°后与四边形A'B'C'D'重合.
    做一做:下列哪些图形是中心对称图形?
    (1)(3)(4)是中心对称图形
    在▱ABCD中,已知OE=OF,找出图形中A、B、E关于点O的对称点,并说出理由.
    以点E和点F为例:∵ OE=OF,又∵点E、O、F同在一条直线上,∴将点E绕着点O旋转180°后必与点F重合.∴点E与点F是关于点O的对称点同理可得A、B关于点O的对称点分别是C、D.
    反过来考虑.已知点E,F关于O对称,也就是将点E绕着点O旋转180°后,要与点F重合,则点E、O、F必须同在一直线上,且OE=OF,即点O平分线段EF.
    思考:你能概括出中心对称图形的性质吗?
    对称中心平分连结两个对称点的线段
    例1 如图,已知△ABC 和点0,作△ A'B'C' ,使△A'B'C'与△ABC关于点O成中心对称.
    解:(1)连结AO并延长到A',使A'O=AO,则点A'即点A关于点O成中心对称的对称点.
    (2)同理,作出点B,C的对称点B',C'.
    (3)连结A'B' ,B'C' ,C'A'.△A'B'C'即为所求作的三角形.
    例2 求证:在直角坐标系中,点A(x,y)与点B(-x,-y)关于原点成中心对称.
    证明:如图,连结AO, BO,作AC⊥x轴,BD⊥x轴,C,D分别为垂足.∵|x|=|-x|,|y|=|-y|,∴CO= DO,AC= BD,∴Rt△AOC≌Rt△BOD.
    分析:由中心对称的定义知,要证明A,B两点关于原点O对称,只需证明A,O,B三点共线,且AO=BO即可.
    续:∴AO= BO,∠AOC=∠BOD.∴∠BOD+∠AOD=∠AOC+∠AOD= 180° ,即A,O,B在一条直线上,当将点A绕点0旋转180°时,点A与点B 重合. 所以点A,B关于原点成中心对称(我们也称为点A,B关于原点对称).
    1.没有哪一门学科能像数学这样,利用如此多的符号图形展现一系列完备且完美的世界.下面是由4个数学式子绘制成的完美曲线,其中是中心对称图形的是(  )
    2.如图,△ABC与△A'B'C'关于点O成中心对称,则下列结论不成立的是(  )A.点A与点A'是一对对称点B.BO=B'OC.∠AOB=∠A'OB'D.∠ACB=∠C'A'B'
    3.在平面直角坐标系中,点A(-1,2)关于原点O对称的点A1的坐标是(  )A.(1,2)    B.(-1,-2)     C.(1,-2)    D.(1,0)
    4.如图所示,已知线段AB和点P,求作平行四边形ABCD,使点P是它的对称中心.(不写作法,保留作图痕迹)
    1.如图是厨余垃圾、可回收物、有害垃圾和其他垃圾的标识,是中心对称图形的是(  )
    2.下列图形中,是中心对称图形的是(  )A.等腰三角形B.直角三角形C.等边三角形D.平行四边形
    3.在平面直角坐标系中,点A(5,m+1)与点B(-5,-3)关于原点对称,则m的值为(  )A.-4 B.4 C.2 D.-5
    如图,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,试问:∠B与∠F相等吗?为什么?
    解: ∠B与∠F相等,理由如下:∵将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,∴∠B=∠DEC,∵AF∥BE,∴∠F=∠DEC,∴∠B=∠F.
    1.什么是中心对称图形?
    如果一个图形绕着一个点旋转180°后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形
    2.中心对称图形的性质是什么?
    3.在直角坐标系中,点(x,y) 关于原点成中心对称的点的坐标是什么?
    1.下列说法:①伸缩门的制作运用了四边形的不稳定性;②夹在两条平行线间的垂线段相等;③成中心对称的两个图形不一定是全等形;④一组对角相等的四边形是平行四边形,其中正确的有几个? (  )A.1个B.2个C.3个D.4个
    2.在玩俄罗斯方块游戏时,底部已有的图形如图所示,接下来出现如下哪个形状时,通过旋转变换后能与已有图形拼成一个中心对称图形?(  )
    3.在平面直角坐标系中,已知点A(2a-b,-8)与点B(-2,a+3b)关于原点对称,则a、b的值为(  )A.-2,-2    B.-2,2    C.2,-2    D.2,2
    如图所示,四边形ABCD中,AD∥BC,点F在CD上且DF=CF,连结AF并延长交BC的延长线于E点,请证明△ADF与△ECF关于点F成中心对称.
    证明:∵AD∥BC,∴∠DAF=∠CEF,又∵∠AFD=∠EFC,DF=CF,∴△ADF≌△ECF(AAS),∴AF=EF,∴△ADF与△ECF关于点F成中心对称.

    相关课件

    数学八年级下册5.3 正方形完美版教学ppt课件:

    这是一份数学八年级下册5.3 正方形完美版教学ppt课件,共30页。PPT课件主要包含了教学目标,复习导入,探究新知,课堂练习,课堂总结,作业布置,矩形的性质有什么,菱形的性质有什么,知识技能类作业,必做题等内容,欢迎下载使用。

    初中数学浙教版(2024)八年级下册5.2 菱形精品教学课件ppt:

    这是一份初中数学浙教版(2024)八年级下册5.2 菱形精品教学课件ppt,共30页。PPT课件主要包含了教学目标,复习导入,探究新知,课堂练习,课堂总结,作业布置,菱形的概念是什么,知识技能类作业,必做题,选做题等内容,欢迎下载使用。

    初中浙教版(2024)第五章 特殊平行四边形5.2 菱形精品教学ppt课件:

    这是一份初中浙教版(2024)第五章 特殊平行四边形5.2 菱形精品教学ppt课件,共30页。PPT课件主要包含了教学目标,复习导入,探究新知,课堂练习,课堂总结,作业布置,知识技能类作业,必做题,选做题,综合实践类作业等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map