搜索
    上传资料 赚现金
    英语朗读宝

    北师大版数学九年级上册 第一章 小结与复习课件

    北师大版数学九年级上册 第一章 小结与复习课件第1页
    北师大版数学九年级上册 第一章 小结与复习课件第2页
    北师大版数学九年级上册 第一章 小结与复习课件第3页
    北师大版数学九年级上册 第一章 小结与复习课件第4页
    北师大版数学九年级上册 第一章 小结与复习课件第5页
    北师大版数学九年级上册 第一章 小结与复习课件第6页
    北师大版数学九年级上册 第一章 小结与复习课件第7页
    北师大版数学九年级上册 第一章 小结与复习课件第8页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版数学九年级上册 第一章 小结与复习课件

    展开

    这是一份北师大版数学九年级上册 第一章 小结与复习课件,共17页。
    B·九年级上册小结与复习第一章 特殊平行四边形平行且相等平行且四边相等平行且四边相等四个角都是直角对角相等邻角互补四个角都是直角互相平分且相等互相垂直平分且相等,每一条对角线平分一组对角中心对称图形轴对称图形中心对称图形轴对称图形中心对称图形轴对称图形互相垂直且平分,每一条对角线平分一组对角一、菱形、矩形、正方形的性质项目四边形①定义:有一外角是直角的平行四边形 ②三个角是直角的四边形③对角线相等的平行四边形①定义:一组邻边相等的平行四边形 ②四条边都相等的四边形③对角线互相垂直的平行四边形①定义:一组邻边相等且有一个角是直角的平行四边形②有一组邻边相等的矩形 ③有一个角是直角的菱形二、菱形、矩形、正方形的常用判定方法例1:如图,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD =6,求菱形的边长AB和对角线AC的长.解:∵四边形ABCD是菱形, ∴AC⊥BD(菱形的对角线互相垂直) OB=OD= BD = ×6=3(菱形的对角线互相平分)在等腰三角形ABC中,∵∠BAD=60°,∴△ABD是等边三角形.∴AB = BD = 6. 考点一 菱形的性质和判定证明:在△AOB中. ∵AB= , OA=2,OB=1. ∴AB2=AO2+OB2. ∴ △AOB是直角三角形, ∠AOB是直角. ∴AC⊥BD. ∴ □ABCD是菱形 (对角线垂直的平行四边形是菱形).1. 已知:如右图,在□ABCD中,对角线AC与BD相交于点O,AB= ,OA=2,OB=1. 求证: □ABCD是菱形.22.已知:如图,在△ABC, AD是角平分线,点E、F分别在AB、 AD上,且AE=AC,EF = ED.求证:四边形CDEF是菱形. ACBEDF证明: ∵ ∠1= ∠2, 又∵AE=AC, ∴ △ACD≌ △AED (SAS). 同理△ACF≌△AEF(SAS) . ∴CD=ED, CF=EF. 又∵EF=ED, ∴四边形ABCD是菱形(四边相等的四边形是菱形).13.如图,两张等宽的纸条交叉重叠在一起,猜想重叠部分的四边形ABCD是什么形状?说说你的理由.ABCDEF解:四边形ABCD是菱形.过点C作AB边的垂线交点E,作AD边上的垂线交点F.S 四边形ABCD=AD · CF =AB ·CE .由题意可知 CE = CF 且 四边形ABCD是平行四边形.∴AD = AB . ∴四边形ABCD是菱形.例2:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5 ,求矩形对角线的长.解:∵四边形ABCD是矩形. ∴AC = BD(矩形的对角线相等). OA= OC= AC,OB = OD = BD , (矩形对角线相互平分) ∴OA = OD.ABCDO考点二 矩形的性质和判定∵∠AOD=120°,∴∠ODA=∠OAD= (180°- 120°)=30°.又∵∠DAB=90° ,(矩形的四个角都是直角) ∴BD = 2AB = 2 ×2.5 = 5.4.如图,在□ABCD中,对角线AC与BD相交于点O , △ABO是等边三角形, AB=4,求□ABCD的面积.解:∵四边形ABCD是平行四边形,∴OA= OC,OB = OD.又∵△ABO是等边三角形,∴OA= OB=AB= 4,∠BAC=60°.∴AC= BD= 2OA = 2×4 = 8.∴□ABCD是矩形 (对角线相等的平行四边形是矩形).∴∠ABC=90°(矩形的四个角都是直角) . 在Rt△ABC中,由勾股定理,得AB2 + BC2 =AC2 , ∴BC= .∴S□ABCD=AB·BC=4× =5.如图,O是菱形ABCD对角线的交点,作BE∥AC,CE∥BD,BE、CE交于点E,四边形CEBO是矩形吗?说出你的理由.DABCEO解:四边形CEBO是矩形.理由如下:已知四边形ABCD是菱形. ∴AC⊥BD. ∴∠BOC=90°. ∵DE∥AC,CE∥BD, ∴四边形CEBO是平行四边形. ∴四边形CEBO是矩形(有一个角是直角的平行四边形是矩形).例3:如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.解:BE=DF,且BE⊥DF.理由如下:(1)∵四边形ABCD是正方形.∴BC=DC,∠BCE =90° .(正方形的四条边都相等,四个角都是直角)∴∠DCF=180°-∠BCE=180°-90°=90°.ABDCFE考点三 正方形的性质和判定∴∠BCE=∠DCF.又∵CE=CF.∴△BCE≌△DCF.∴BE=DF.(2)延长BE交DE于点M,∵△BCE≌△DCF ,∴∠CBE =∠CDF.∵∠DCF =90° ,∴∠CDF +∠F =90°.∴∠CBE+∠F=90° , ∴∠BMF=90°.∴BE⊥DF.ABDFECM6. 如图,在矩形ABCD中, BE平分∠ABC , CE平分∠DCB , BF∥CE , CF∥BE.求证:四边形BECF是正方形.FABECD解析:先由两组平行线得出四边形BECF平行四边形;再由一个直角,得出是矩形;最后由一组邻边相等可得正方形.45°45°FABECD证明: ∵ BF∥CE,CF∥BE, ∴四边形BECF是平行四边形. ∵四边形ABCD是矩形, ∴ ∠ABC = 90°, ∠DCB = 90°, ∵BE平分∠ABC, CE平分∠ DCB, ∴∠EBC = 45°, ∠ECB = 45°, ∴ ∠ EBC =∠ ECB . ∴ EB=EC,∴□ BECF是菱形 . 在△EBC中 ∵ ∠EBC = 45°,∠ECB = 45°, ∴∠BEC = 90°, ∴菱形BECF是正方形.(有一个角是直角的菱形是正方形)四边形的分类及转化有一个角是90°(或对角线互相垂直)有一对邻边相等(或对角线相等) 平行四边形矩形菱形正方形一组邻边相等且一个内角为直角(或对角线互相垂直且相等)有一个角是90°(或对角线互相垂直)有一对邻边相等(或对角线相等)

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map