北师大版数学九年级上册 2.6 第3课时 其他问题与一元二次方程课件
展开
这是一份北师大版数学九年级上册 2.6 第3课时 其他问题与一元二次方程课件,共20页。
B·九年级上册2.6 应用一元二次方程第3课时 其他问题第二章 一元二次方程掌握列一元二次方程解决传播、数学问题,并能根据具体问题的实际意义,检验结果的合理性.(重点、难点)理解将实际问题抽象为方程模型的过程,并能运用所学的知识解决问题.传染病,一传十, 十传百…… 传播问题与一元二次方程问题1 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 分析 :设每轮传染中平均一个人传染了x个人. 传染源记作小明,其传染示意图如下: 第2轮•••12x第1轮第1轮传染后人数x+1第2轮传染后人数x(x+1)注意:不要忽视小明的二次传染x1= ,x2= .根据示意图,列表如下: 解方程,得答:平均一个人传染了________个人.10-12(不合题意,舍去)10解:设每轮传染中平均一个人传染了x个人.(1+x)2=121注意:一元二次方程的解有可能不符合题意,所以一定要进行检验.1+x=(1+x)11+x+x(1+x)=(1+x)2想一想 如果按照这样的传染速度,三轮传染后有多少人患流感?第2种做法 以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331人.分析 第1种做法 以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331人.(1+x)3列一元二次方程解应用题时,要注意应用题的内在数量关系,选择适当的条件列代数式,选择剩下的一个关系列方程.在解出方程后要注意检验结果符不符合题意或实际情况,要把不符合实际情况的方程的根舍去.总结归纳 例1 某种电脑病毒传播速度非常快,如果一台电脑被感染,经过两轮感染后就会有 100 台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,4 轮感染后,被感染的电脑会不会超过 7000 台?典例精析解:设每轮感染中平均一台电脑会感染 x 台电脑,则1+x+x(1+x)=100,即(1+x)2=100.解得 x1=9,x2=-11(舍去).∴x=9.4 轮感染后,被感染的电脑数为(1+x)4=104>7000. 答:每轮感染中平均每一台电脑会感染 9 台电脑,4 轮感染后,被感染的电脑会超过 7000 台.利用一元二次方程解决数字问题例2:一个数平方的2倍等于这个数的7倍,求这个数.解:设这个数为x, 根据题意,得 2x2 = 7x. 整理,得: 2x2 -7x = 0, x (2x -7) = 0. ∴ x = 0 或 2x – 7 = 0.例3:有一个两位数,个位数字与十位数字的和为14,交换为之后,得到新的两位数,比这两个数字的积还大38,求这个两位数.解:设个位数字为x,则十位数字为14 - x ,两数字之积为x(14 -x) ,两个数字交换位置后的新两位数为 10x +(14 - x). 根据题意,得 10x +(14 - x)- x(14 - x)= 38. 整理,得 x2 - 5x - 24 = 0, 解得 x1 = 8 , x2 = - 3. 因为个位数上的数字不可能是负数,所以x= - 3应舍去. 当x = 8 时,14 - x = 6. 所以这个两位数是68.针对练习两个连续奇数的积是 323,求这两个数.解:设较小奇数为 x,则另一个为 x + 2, 依题意,得 x (x + 2 ) = 323. 整理后,得 x2 + 2x - 323 = 0. 解得 x1 = 17,x2 = - 19. 由 x = 17,得 x + 2 = 19. 由 x = - 19,得 x + 2 = - 17. 答:这两个奇数是 17,19 或者- 19, - 17.若是设两个奇数分别为(x-1) ,(x + 1),请帮忙写出解答过程。解:设较小奇数为 x-1,则另一个为 x +1, 依题意,得 (x - 1 ) (x + 1 ) = 323. 整理后,得 x2 =324. 解得 x1 = 18,x2 = - 18. 由 x = 18,得 x - 1 = 17,x + 1 = 19. 由 x = - 18,得 x - 1 = - 19, x + 1 = - 17. 答:这两个奇数是 17,19 或者- 19, - 17.1.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为( ) A.x2=1980 B. x(x+1)=1980 C. x(x-1)=1980 D.x(x-1)=1980D2.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为( ) A.1+x+x(1+x)=73 B.1+x+x2=73 C.1+x2 =73 D.(1+x)2=73B3.一个两位数,十位上的数字与个位上的数字之和为5,把这个数的个位数字与十位数字对调后,所得的新数与原数的积为736,求原数.解:设原数的个位上数字为x,十位上的数字为(5-x),则原数表示为[10(5-x)+x],对调后新数表示为[10x+(5-x)], 根据题意列方程得[10(5-x)+x] [10x+(5-x)]=736.化简整理得x2-5x+6=0,解得x1=3,x2=2.所以这个两位数是32或23.4.甲型流感病毒的传染性极强,某地因1人患了甲型流感没有及时隔离治疗,经过两天的传染后共有9人患了甲型流感,每天平均一个人传染了几人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型流感?解:设每天平均一个人传染了x人,解得 x1=-4 (舍去),x2=2.答:每天平均一个人传染了2人,这个地区一共将会有2187人患甲型流感.1+x+x(1+x)=9,即(1+x)2=9.9(1+x)5=9(1+2)5=2187,(1+x)7= (1+2)7=2187.5.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排15场比赛,应邀请多少个球队参加比赛?答:应邀请6支球队参赛.解:设应邀请x支球队参赛,由题意列方程得化简为x2-x=30,解得x1=-5 (舍去),x2=6.