27.2.1 点与圆的位置关系 华师大版数学九年级下册教案
展开27.2.1 点与圆的位置关系 课题 27.2.1 点与圆的位置关系 单元第27章学科数学年级九年级学习目标1.理解点与圆的位置关系.2.运用点与圆的位置关系.重点理解点与圆的位置关系.难点运用点与圆的位置关系教学过程教学环节教师活动学生活动设计意图导入新课你玩过飞镖吗? 它的靶子是由一些圆组成的.你知道击中靶子上不同位置的成绩是如何计算的吗?这其中体现了平面内点与圆的位置关系.欣赏图片,体会数学来于生活.这其中体现了平面内点与圆的位置关系.从生活中,让学生去发现存在的数学问题,体会数学来于生活,应用于生活;同时引出本节课题. 讲授新课我们已经知道圆上所有的点到圆心的距离都等于半径.如图 27.2.1,设☉O的的半径为r,点A在圆内,点B在圆上,点C在圆外,那么OA<r,OB=r,OC>r如果已知圆的半径和点到圆心的距离就可以判断点和圆的位置关系了.圆上的点有无数多个,那么多少个点就可以确定一 个圆呢? 如图 27.2.2,画过点A的圆过一点可以画多少个圆?无数个如图 27.2.3,画过两点A,B的圆.过两点可以画多少个圆? 圆心在哪里? 无数个思考经过三点一定能画出一个圆吗?如果能,那么如何找出这个圆的圆心呢?如图27.2.4,如果A,.B,C三点不在同一条直线上,那么过A,.B两点的圆的圆心必在线段AB的垂直平分线上,而过B,C两点的圆的圆心必在线段BC的垂直平分线上,此时,这两条垂直平分线一定相交,且只有一个交点,设交点为O,则OA=OB=OC,于是,以点O为圆心,OA为半径画圆,便可画出经过A,B,C三点的圆.不在同一条直线上的三个点确定一个圆也就是说,经过三角形的三个顶点可以画一个圆,并且只能画一个圆.经过三角形三个顶点的圆就是这个三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点.过已知一点可作无数个圆.过已知两点也可作无数个圆.过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.课堂练习1.已知⊙O的半径为7 cm,若线段OA=4 cm,则点A在⊙O ;若线段OB=7 cm,则点B在⊙O;若线段OC=12 cm,则点C在⊙O____.2.⊙O的半径8 cm,当OP____时,点P 在圆上;当OP____时,点P在圆内;当OP____ 时,点P不在圆外. 2. 若一个三角形的外心在一边上,则此三角形的形状为( ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 等腰三角形中考链接如图所示,Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,CD⊥AB于点D.若以点C为圆心,分别以r1=2 cm,r2=2.4 cm,r3=3 cm为半径作圆,试判断点D与这三个圆的位置关系.活动探究,小组讨论.圆上的点有无数多个,那么多少个点就可以确定一 个圆呢? 让学生以小组单位进行交流探讨,过一点可以画多少个圆?过两点可以画多少个圆? 圆心在哪里? 经过三点一定能画出一个圆吗?如果能,那么如何找出这个圆的圆心呢?提高学生的动手、动脑、独立思考、合作交流的能力.在探索中发现,这样才能理解其中的规律并能加以总结.课堂深化拓展练习,将比较难的问题、中考考题、实际生活背景题,放在适当的时候处理.通过合作交流探讨,得到点与圆的位置关系,而不是教师直接给出.培养学生的总结能力通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.使学生易于接受,提高思维课堂小结可启发学生说出自己的心得体会及疑问.小结本节课的知识要点及数学方法,使知识系统化.