所属成套资源:人教版数学七年级下册重难点培优训练 (含答案详解)
人教版数学七年级下册重难点培优训练5.1 相交线(含答案详解)
展开相交线与平行线5.1相交线 考点一、相交线相交线:如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。如直线AB、CD相交于点O。 A D C O B对顶角:两条直线相交出现对顶角。顶点相同,角的两边互为反向延长线.,满足这种关系的角,互为对顶角,对顶角相等。对顶角是成对出现的。邻补角:有一条公共边,角的另一边互为反向延长线.满足这种关系的两个角,互为领补角。考点二、垂线垂直:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。从垂直的定义可知,判断两条直线互相垂直的关键:要找到两条直线相交时四个交角中一个角是直角。垂直的表示:用“⊥”和直线字母表示垂直垂直的书写形式: 如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O。书写形式:DAO∵∠AOD=90°(已知)∴AB⊥CD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°。C书写形式:∵ AB⊥CD (已知)B∴ ∠AOD=90° (垂直的定义)应用垂直的定义:∠AOC=∠BOC=∠BOD=90°垂线的画法:BAl如图,已知直线 l 和l上的一点A ,作l的垂线. 则所画直线AB是过点A的直线l的垂线. 工具:直尺、三角板1放:放直尺,直尺的一边要与已知直线重合;2靠:靠三角板,把三角板的一直角边靠在直尺上;3移:移动三角板到已知点;4画线:沿着三角板的另一直角边画出垂线.垂线的性质:1、同一平面内,过一点有且只有一条直线与已知直线垂直.2、连接直线外一点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 FEDCBA87654321考点三、同位角、内错角、同旁内角(出现在一条直线与两条直线分别相交的情形)同位角:一边都在截线上而且同向,另一边在截线同侧的两个角。如∠1和∠5,∠4和∠8。内错角:一边都在截线上而且反向,另一边在截线两侧的两个角。(两个角在两条截线内) 如∠3和∠5,∠4和∠6。同旁内角:一边都在截线上而且反向,另一边在截线同旁的两个角。(两个角在两条截线内) 如∠3和∠6,∠4和∠5。题型一:相交线与垂线的定义1.(2021·全国·七年级)下列说法中,正确的是( )A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离B.互相垂直的两条直线不一定相交C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cmD.过一点有且只有一条直线垂直于已知直线2.(2021·全国·七年级专题练习)按语句画图:点在直线上,也在直线上,但不在直线上,直线,,两两相交正确的是( )A.B.C.D.3.(2020·上海市静安区实验中学七年级课时练习)下列说法中不正确的是( )A.在同一平面内,经过一点能而且只能画一条直线与已知直线垂直B.一条线段有无数条垂线C.在同一平面内过射线的端点只能画一条直线与这条射线垂直D.如果直线AB垂直平分线段CD,那么CD也垂直平分AB题型二:垂线最短问题4.(2021·吉林净月高新技术产业开发区·七年级期末)如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )A.3.5 B.4 C.5 D.5.55.(2021·吉林·长春市绿园区教师进修学校七年级期末)如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短6.(2021·全国·七年级)如图,从旗杆的顶端向地面拉一条绳子,绳子底端恰好在地面处,若旗杆m,则绳子的长度不可能是( ).A.12m B.11m C.10.3m D.10m题型三:与对顶角有关问题7.(2022·全国·七年级)如图所示,∠1和∠2是对顶角的图形共有( )A.0个 B.1个 C.2个 D.3个8.(2022·福建省福州第十九中学七年级期末)如图,直线AB与CD相交于点O,若,则等于( )A.40° B.60° C.70° D.80°9.(2022·山东·滕州市西岗镇西岗中学七年级期末)如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.45° B.55° C.65° D.75题型四:与邻补角有关问题10.(2021·上海市罗南中学七年级期中)如图,直线AB和CD相交于点O,下列选项中与∠AOC互为邻补角的是( )A.∠BOC B.∠BOD C.∠DOE D.∠AOE11.(2021·吉林·长春外国语学校七年级阶段)如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )A.72° B.98°C.100° D.108°12.(2021·全国·七年级课时练习)下列说法中错误的是( )A.同一个角的两个邻补角是对顶角 B.对顶角相等,相等的角是对顶角C.对顶角的平分线在一条直线上 D.的补角与的和是题型四:同位角、内错角、同旁内角的问题13.(2022·福建·泉州五中七年级期末)如图,直线a、b被直线c所截,下列说法不正确的是( )A.1与5是同位角 B.3与6是同旁内角C.2与4是对顶角 D.5与2是内错角14.(2022·全国·七年级)如图,直线被所截,下列说法,正确的有( )①与是同旁内角;②与是内错角;③与是同位角;④与是内错角.A.①③④ B.③④ C.①②④ D.①②③④15.(2021·重庆·七年级期末)如图,与是直线和被直线所截形成的( )A.同位角 B.内错角 C.同旁内角 D.不能确定一、单选题16.(2022·江苏新吴·七年级期末)如图,小华同学用剪刀沿直线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小( )A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短17.(2022·江苏句容·七年级期末)如图,于O,直线CD经过O,,则的度数是( )A. B. C. D.18.(2022·全国·七年级课前预习)下列各图中,∠1与∠2是对顶角的是( )A.B.C.D.19.(2022·黑龙江香坊·七年级期末)在如图中,∠1和∠2不是同位角的是( )A.B.C. D.20.(2021·上海·七年级期中)如图,的内错角是( )A. B. C. D.21.(2021·黑龙江·兴凯湖农场学校七年级期末)点P是直线外一点,为直线上三点,,则点P到直线的距离是( )A.2cm B.小于2cm C.不大于2cm D.4cm22.(2022·全国·七年级)如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是( )A.线段AC的长度表示点C到AB的距离B.线段AD的长度表示点A到BC的距离C.线段CD的长度表示点C到AD的距离D.线段BD的长度表示点A到BD的距离23.(2021·北京·九年级专题练习)如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )A.4个 B.3个 C.2个 D.1个一:选择题24.(2021·吉林省第二实验学校七年级阶段练习)如图,∠1与∠2是同位角的是( ) ① ② ③ ④A.① B.② C.③ D.④25.(2021·山东招远·九年级期中)如图,在、两地之间要修条笔直的公路,从地测得公路走向是北偏东,,两地同时开工,若干天后公路准确接通,若公路长千米,另一条公路长是千米,且从地测得公路的走向是北偏西,则地到公路的距离是( )A.千米 B.千米 C.千米 D.千米26.(2021·黑龙江·哈尔滨市松雷中学校七年级阶段练习)下列语句中:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③互为邻补角的两个角的平分线互相垂直;④经过一点有且只有一条直线与已知直线垂直;其中正确的个数有( )A.1个 B.2个 C.3个 D.4个27.(2021·全国·七年级)如图,点A,O,B在一条直线上,OE⊥AB, ∠1与∠2互余, 那么图中相等的角有( )A.2对 B.3对 C.4对 D.5对28.(2021·广东惠来·七年级期末)如图,在所标识的角中,下列说法不正确的是( )A.和互为补角 B.和是同位角C.和是内错角 D.和是对顶角29.(2021·全国·七年级课时练习)下列说法正确的个数是( ).①连接直线外一点到直线上各点的所有线段中,垂线段最短.②点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.③直线外一点到这条直线的垂线段,叫做点到直线的距离.④在三角形中,若,则.A.0 B.1 C.2 D.330.(2021·广西·南宁市第八中学七年级阶段练习)如图,已知直线EF,CD相交于点O,,且OC平分∠AOF,若∠AOE=40°,则( )A.10° B.20° C.25° D.30°31.(2021·河南川汇·七年级期中)如图,与构成同旁内角的角有几个?( )A.4个 B.5个 C.6个 D.7个二、填空题32.(2022·全国·七年级课前预习)如图,在所标识的角中,∠1与____是同位角,∠2与_____是内错角,∠5与____是同旁内角. 33.(2022·全国·九年级课前预习)(1)如图1,若直线m、n相交于点O,∠1=90°,则a______b;(2)若直线AB、CD相交于点O,且AB⊥CD,则∠BOD =______;(3)如图2,BO⊥AO,∠BOC与∠BOA的度数之比为1∶3,那么∠COA=___ ,∠BOC的补角为______.34.(2021·上海浦东新·七年级期中)如图,∠E的同位角有___个.35.(2021·黑龙江·哈尔滨市松雷中学校七年级阶段练习)如图,直线AB、CD、EF相交于点O,OG⊥EF,且∠GOB=20°,∠AOC=40°,则∠COE=_____°.36.(2021·全国·七年级课时练习)四条直线两两相交,则图形中共有_________对对顶角(平角除外);有_______对邻补角.三、解答题37.(2022·福建省福州屏东中学七年级期末)已知A,B,C三点如图所示,(1)画直线,线段,射线,过点C画的垂线段;(2)若线段,,,,利用三角形面积公式可以得到C点到的距离是_________.38.(2022·黑龙江香坊·七年级期末)已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.(1)如图1,求∠DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.39.(2021·陕西榆林·七年级期末)已知点O为直线AB上一点,将直角三角板MON按如图所示放置,且直角顶点在O处,在内部作射线OC,且OC恰好平分.(1)若,求的度数;(2)若,求的度数.40.(2021·吉林·长春外国语学校七年级阶段练习)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOC=76°;(1)求∠DOE的度数;(2)求∠BOF的度数.41.(2021·江苏建湖·七年级期末)已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒1.C【解析】【分析】根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.【详解】从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;在同一平面内,互相垂直的两条直线一定相交,即选项B错误;直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;故选:C.【点睛】本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.2.A【解析】【分析】根据相交线的概念、点与直线的位置关系进行判断即可.【详解】解:A.符合条件, B.不符合点P不在直线c上;C.不符合点P在直线a上;D.不符合直线a、b、c两两相交;故选:A.【点睛】本题考查的是相交线、点与直线的位置关系,正确理解题意、认识图形是解题的关键.3.D【解析】【分析】根据垂直公理和垂直平分线的定义逐一判断即可.【详解】A. 在同一平面内,经过一点能而且只能画一条直线与已知直线垂直,故本选项正确;B. 一条线段有无数条垂线,故本选项正确;C. 在同一平面内过射线的端点只能画一条直线与这条射线垂直,故本选项正确;D. 如果直线AB垂直平分线段CD,因为AB是直线,所以CD不垂直平分AB,故本选项错误.故选D.【点睛】此题考查的是垂直公理和垂直平分线的定义,掌握垂直公理和垂直平分线的定义是解决此题的关键.4.D【解析】【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.【详解】∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.∵AB=3,∴AC=5,∴3≤AP≤5,故AP不可能是5.5,故选:D.【点睛】本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.5.D【解析】【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D6.D【解析】【分析】根据点到直线的距离垂线段最短分析即可.【详解】根据题意,点到的距离为,根据垂线段最短可知,的长度不可能小于,故选D.【点睛】本题考查了垂线段最短,理解垂线段最短是解题的关键.7.B【解析】【分析】对顶角:有公共的顶点,角的两边互为反向延长线,根据定义逐一判断即可.【详解】只有(3)中的∠1与∠2是对顶角.故选B【点睛】本题考查了对顶角的定义,理解对顶角的定义是解题的关键.8.A【解析】【分析】根据对顶角的性质,可得∠1的度数.【详解】解:由对顶角相等,得∠1=∠2,又∠1+∠2=80°,∴∠1=40°.故选:A.【点睛】本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.9.B【解析】【分析】根据角平分线的定义、垂线的定义、对顶角和邻补角的定义计算即可;【详解】∵OM平分∠AOC,∠AOM=35°,∴,∵ON⊥OM,∴,∴;故选B.【点睛】本题主要考查了角平分线的定义、垂线的性质和对顶角的定义,准确计算是解题的关键.10.A【解析】【详解】解:图中与互为邻补角的是和,故选:A.【点睛】本题考查了邻补角,熟练掌握邻补角的定义(两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角)是解题关键.11.D【解析】【分析】根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.【详解】解:设∠BOD=x,∵∠BOD:∠BOE=1:2,∴∠BOE=2x,∵OE平分∠BOC,∴∠COE=∠BOE=2x,∴x+2x+2x=180°,解得,x=36°,即∠BOD=36°,∠COE=72°,∴∠AOC=∠BOD=36°,∴∠AOE=∠COE+∠AOC=108°,故选:D.【点睛】本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.12.B【解析】【分析】根据对顶角、补角和邻补角的定义即可求解.【详解】解:同一个角的两个邻补角是对顶角,故A对;对顶角相等,相等的角不一定是对顶角,故B错;对顶角的平分线在一条直线上,故C对;的补角与的和是,故D对.故选:B【点睛】本题考查了对顶角、补角和邻补角的定义,熟练掌握对顶角、补角和邻补角的定义是解题的关键.13.D【解析】【分析】根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.【详解】解:A、∠1与∠5是同位角,故本选项不符合题意;B、∠3与∠6是同旁内角,故本选项不符合题意.C、∠2与∠4是对顶角,故本选项不符合题意;D、∠5与2不是内错角,故本选项符合题意.故选:D.14.D【解析】【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①与是同旁内角,说法正确;②与是内错角,说法正确;③与是同位角,说法正确;④与是内错角,说法正确,故选:D.15.C【解析】【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的内部,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.【详解】解:如图,与是直线和被直线所截形成的同旁内角.故选:C.【点睛】本题主要考查了同旁内角的概念,同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.16.D【解析】【分析】根据两点之间,线段最短解答即可.【详解】解:用剪刀沿虚线将一片平整的长方形纸片剪掉一部分,发现剩下纸片的周长比原纸片的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:D.【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.17.B【解析】【分析】由OA⊥OB,得出∠AOB=90°,再根据∠AOD=35°,由余角的定义可得出∠BOD,再根据补角的定义可得出∠BOC的度数.【详解】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOD=35°,∴∠BOD=90°-35°=55°,∴∠BOC=180-55°=125°,故选B.【点睛】本题考查了垂线的定义,平角的定义,关键是利用90°和180°的数据进行计算.18.D【解析】略19.D【解析】【分析】同位角的定义:两条直线a,b被第三条直线c所截,在截线c的同侧,被截两直线a,b的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.20.D【解析】【分析】根据内错角是在截线两旁,被截线之内的两角,内错角的边构成” “形作答.【详解】解:如图,的内错角是,∠4的同旁内角是∠3,∠4的同位角是∠2,∠4与∠1不具有特殊位置关系.故选:.【点睛】本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.21.C【解析】【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,∴点到直线的距离不大于,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.22.D【解析】【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A. 线段AC的长度表示点C到AB的距离,说法正确,不符合题意;B. 线段AD的长度表示点A到BC的距离,说法正确,不符合题意;C. 线段CD的长度表示点C到AD的距离,说法正确,不符合题意;D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.23.B【解析】【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF,∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE,∴当∠AOF=50°时,∠DOE=50°;故①正确;∵OB平分∠DOG,∴∠BOD=∠BOG,∴∠BOD=∠BOG=∠EOF=∠AOC,故④正确;∵,∴∠BOD=180°-150°=30°,∴故③正确;若为的平分线,则∠DOE=∠DOG,∴∠BOG+∠BOD=90°-∠EOE,∴∠EOF=30°,而无法确定,∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.24.B【解析】【分析】同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.【详解】根据同位角的定义可知②中的∠1与∠2是同位角;故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.25.B【解析】【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【详解】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°−∠ABG−∠EBC=180°−48°−42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故选B.【点睛】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.26.A【解析】【分析】根据对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义分别判断.【详解】解:①有公共顶点且相等的角不一定是对顶角,故错误;②直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误③互为邻补角的两个角的平分线互相垂直,故正确;④同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误;故选A.【点睛】本题考查了对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义,属于基础知识,要注意理解概念,抓住易错点.27.D【解析】【分析】根据垂直的定义、互为余角的两个角的和等于90°以及等角的余角相等解答即可.【详解】解:∵OE⊥AB,∴∠AOE=∠BOE=90°,∴∠1+∠AOC=90°,∠2+∠BOD=90°,∵∠1与∠2互余,∴∠COD=∠1+∠2=90°,∴∠1=∠BOD,∠2=∠AOC,∠AOE=∠COD,∠BOE=∠COD,∴图中相等的角有5对.故选:D.【点睛】本题考查了垂直和互余的定义以及等角的余角相等的应用,是基础题,熟记概念并准确识图是解题的关键.28.C【解析】【分析】根据同位角、内错角、邻补角、对顶角的定义求解判断即可.【详解】解:A、和是邻补角,故此选项不符合题意;B、和是同位角,故此选项不符合题意;C、和不是内错角,故此选项符合题意;D、和是对顶角,故此选项不符合题意.故选:C.【点睛】此题考查了同位角、内错角、对顶角以及邻补角的定义,熟记同位角、内错角、邻补角、对顶角的定义是解题的关键.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.29.D【解析】【分析】根据垂线段最短、点到直线的距离,三角形中边的关系,逐项分析即可.【详解】解:连接直线外一点到直线上各点的所有线段中,垂线段最短;故①正确;点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离;故②正确;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;故③错误;在三角形中,若,即是斜边,则;故④正确;∴正确的有①②④,共3个;故选:D.【点睛】本题主要考查了垂线段、点到直线的距离,三角形中边的关系,正确理解概念是解答此题的关键.30.B【解析】【分析】由垂直的定义以及已知∠AOE求得,根据邻补角求得,根据角平分线的定义求得,根据对顶角相等求得,根据即可求得【详解】,∠AOE=40°,,, OC平分∠AOF,,故选B【点睛】本题考查了垂直的定义,角平分线的定义,邻补角,对顶角相等,掌握以上知识是解题的关键.31.B【解析】【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角可得答案.【详解】解:如图:构成同旁内角的角有,,,,, 故选:B.【点睛】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“”形.32. ∠4 ∠3 ∠3【解析】略33. ⊥ 90° 60° 150°【解析】略34.2【解析】【分析】由题意直接根据同位角的定义进行解答即可.【详解】解:根据同位角的定义可得:∠BAD和∠E是同位角;∠BAC和∠E是同位角;∴∠E的同位角有2个.故答案为:2.【点睛】本题考查同位角的概念,熟记同位角的定义是解题的关键.35.30°【解析】【分析】先根据对顶角得到∠BOD=40°,再根据垂直的定义得到∠EOG=∠FOG=90°,求出∠DOF,最后根据对顶角求出∠COE.【详解】解:∵∠AOC=40°,∴∠BOD=40°,∵OG⊥EF,∴∠EOG=∠FOG=90°,∵∠GOB=20°,∴∠BOF=70°,∴∠COE=∠DOF=70°-40°=30°,故答案为:30°.【点睛】本题考查了垂直的定义,对顶角的性质;弄清各个角之间的关系是解决问题的关键.36. 12 24【解析】【分析】根据对顶角、邻补角的定义得到4×3=12对对项角,6×4=24对邻补角.【详解】解:∠AOC与∠BOD互为对顶角,∠AOH与∠BOG互为对顶角,∠AOF与∠BOE互为对顶角;∠COH与∠DOG互为对顶角,∠COF与∠DOE互为对顶角,∠COB与∠DOA互为对顶角;∠HOF与∠GOE互为对顶角,∠HOB与∠GOA互为对顶角,∠HOD与∠GOC互为对顶角;∠FOB与∠EOA互为对顶角,∠FOD与∠EOC互为对顶角,∠FOG与∠EOH互为对顶角,∴对顶角共有12对;∠AOC与∠BOC互为邻补角,∠AOH与∠BOH互为邻补角,∠AOF与∠BOF互为邻补角,∠AOE与∠BOE互为邻补角,∠AOG与∠BOG互为邻补角,∠AOD与∠BOD互为邻补角;∠COH与∠DOH互为邻补角,∠COF与∠DOF互为邻补角,∠COB与∠DOB互为邻补角,∠COA与∠DOA互为邻补角,∠COE与∠DOE互为邻补角,∠COG与∠DOG互为邻补角;∠GOE与∠HOE互为邻补角,∠GOA与∠HOA互为邻补角,∠GOC与∠HOC互为邻补角,∠GOD与∠HOD互为邻补角,∠GOB与∠HOB互为邻补角,∠GOF与∠HOF互为邻补角;∠EOA与∠FOA互为邻补角,∠EOC与∠FOC互为邻补角,∠EOH与∠FOH互为邻补角,∠EOG与∠FOG互为邻补角,∠EOD与∠FOD互为邻补角,∠EOB与∠FOB互为邻补角,∴邻补角共有24对,故答案为:12;24.【点睛】本题考查了对顶角、邻补角的定义;仔细观察图形弄清各个角之间的对顶角关系和邻补角关系是解题的关键.37.(1)作图见解析(2)【解析】【分析】(1)过画直线 连接 以为端点画射线 再利用三角尺过作 垂足为 从而可得答案;(2)先求解的面积为6,再利用 再解方程即可得到答案.(1)解:如图,直线 线段射线 垂线段即为所求作的直线,线段,射线,垂线段.(2)解: 解得: 所以C点到的距离是 故答案为:【点睛】本题考查的是画直线,线段,射线,垂线段,以及点到直线的距离的含义,掌握“简单几何图形的作图及利用等面积法求解点到直线的距离”是解本题的关键.38.(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【解析】【分析】(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.【详解】解:(1)∵EO⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠EOC:∠BOD=7:11,∴∠COE=35°,∠BOD=55°,∴∠DOE=∠BOD+∠BOE=145°;(2)∵MN⊥CD,∴∠COM=90°,∴∠EOM=∠COE+∠COM=125°,∵∠BOD=55°,∴∠BOC=180°-∠BOD=125°,∴∠AOD=∠BOC=125°,∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.39.(1)48°;(2)45°.【解析】【分析】(1)先根据余角的定义求出∠MOC,再根据角平分线的定义求出∠BOM,然后根据∠AOM=180°-∠BOM计算即可;(2)根据角的倍分关系以及角平分线的定义即可求解;【详解】解:(1)∵∠MON=90°,∠CON=24°,∴∠MOC=90°-∠CON=66°,∵OC平分∠MOB,∴∠BOM=2∠MOC=132°,∴∠AOM=180°-∠BOM=48°;(2)∵∠BON=2∠NOC,OC平分∠MOB,∴∠MOC=∠BOC=3∠NOC,∵∠MOC+∠NOC=∠MON=90°,∴3∠NOC+∠NOC=90°,∴4∠NOC=90°,∴∠BON=2∠NOC=45°,∴∠AOM=180°-∠MON-∠BON=180°-90°-45°=45°;【点睛】本题考查了角平分线的意义、互补、互余的意义,正确表示各个角,理清各个角之间的关系是得出正确结论的关键.40.(1)38°;(2)33°【解析】【分析】(1)根据对顶角相等得出∠BOD,再根据角平分线计算∠DOE;(2)求出∠DOE的补角∠COE,再用角平分线得出∠EOF,最后根据∠BOF=∠EOF-∠BOE求解.【详解】解:(1)∵∠AOC=76°,∴∠BOD=∠AOC=76°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=38°;(2)∵∠DOE=38°,∴∠COE=180°-∠DOE=142°,∵OF平分∠COE,∴∠EOF=∠COE=71°,∴∠BOF=∠EOF-∠BOE=33°.【点睛】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.41.(1)60,75;(2)秒;(3)3或12或21或30【解析】【分析】(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.(2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.【详解】解:(1)∵∠BOE=90°,∴∠AOE=90°,∵∠AOC=α=30°,∴∠EOC=90°-30°=60°,∠AOD=180°-30°=150°,∵OF平分∠AOD,∴∠FOD=∠AOD=×150°=75°;故答案为:60,75;(2)当,.设当射线与射线重合时至少需要t秒,可得,解得:;答:当射线与射线重合时至少需要秒;(3)设射线转动的时间为t秒,由题意得:或或或,解得:或12或21或30.答:射线转动的时间为3或12或21或30秒.