所属成套资源:人教版数学七年级下册重难点培优训练 (含答案详解)
人教版数学七年级下册第八章《二元一次方程组》同步单元基础与培优高分必刷卷(2份,原卷版+解析版)
展开
这是一份人教版数学七年级下册第八章《二元一次方程组》同步单元基础与培优高分必刷卷(2份,原卷版+解析版),文件包含人教版数学七年级下册第八章《二元一次方程组》同步单元基础与培优高分必刷卷全解全析doc、人教版数学七年级下册第八章《二元一次方程组》同步单元基础与培优高分必刷卷考试版doc等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
第八章《二元一次方程组》同步单元基础与培优高分必刷卷全解全析1.D【解析】【分析】根据已知将代入二元一次方程组得到m,n的值,即可求得m-n的值.【详解】∵是二元一次方程组∴∴m=1,n=-3m-n=4故选:D【点睛】本题考查了二元一次方程组解的定义,已知二元一次方程组的解,可求得方程组中的参数.2.C【解析】【分析】把方程组中的k看作常数,利用加减消元法,用含k的式子分别表示出x与y,然后根据x与y的值之和为2,列出关于k的方程,求出方程的解即可得到k的值.【详解】,①×2-②×3得:y=2(k+2)-3k=-k+4,把y=-k+4代入②得:x=2k-6,又x与y的值之和等于2,所以x+y=-k+4+2k-6=2,解得:k=4故选:C.3.C【详解】∵∴由①×3+②×2,得由①×4+②×5,得∴ 故选:C.4.D【解析】【分析】根据各选项分别计算,即可解答.【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:,故选D.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.6.D【解析】【详解】分析:先根据非负数的性质列出关于x、y的二元一次方程组,再利用加减消元法求出x的值,利用代入消元法求出y的值即可.详解:∵,∴将方程组变形为,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为.故选D.点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.7.C【解析】【详解】解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.8.B【解析】【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k得到x与y的方程,检验即可;③表示出y-x,代入已知不等式求出k的范围,判断即可;④方程组整理后表示出x+3y,检验即可.【详解】解:①把k=0代入方程组得:,解得:,代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确;②由x+y=0,得到y=-x,代入方程组得:,即k=3k-1,解得:,则存在实数,使x+y=0,本选项正确;③,解不等式组得:,∵,∴,解得:,此选项错误;④x+3y=3k-2+3-3k=1,本选项正确;∴正确的选项是①②④;故选:B.【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.9.B【解析】【分析】根据定义新运算列出二元一次方程组即可求出a和b的值,再根据定义新运算公式求值即可.【详解】解:∵,,,∴解得:∴=41故选B.【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.10.C【解析】【分析】本方程组涉及5个未知数,,,,,如果直接比较大小关系很难,那么考虑方程①②,②③,③④,④⑤,⑤①均含有两个相同的未知数,通过可得,,,,的大小关系.【详解】方程组中的方程按顺序两两分别相减得,,,.∵∴,,,,于是有.故选C.【点睛】本题要注意并不是任何两个方程都能相减,需要消去两个未知数,保留两个未知数的差,这才是解题的关键.11.2【解析】【分析】把x与y的两对值代入方程,解关于m与n的方程,计算求出m与n的值即可;【详解】解:把 和代入方程得:,①×2+②得:15n=15,解得:n=1,把n=1代入①得:m=2,则方程组的解为;∴mn=21=2故答案为:2【点睛】此题考查了二元一次方程组的解,熟练掌握方程组的解法是解本题的关键.12.3【解析】【分析】由,可以得到,解二元一次方程组即可.【详解】解:∵∴∴得:解得:将代入得:所以二元一次方程组的解为: 所以满足题意的的值为:3故答案为:3【点睛】本题考查绝对值的非负性,以及二元一次方程组的应用,能够根据题意整理得到二元一次方程组是解题的重点.13.-4【解析】【分析】设其中4个方框中的数分别为b、c、d、e.根据题意即可列出方程组,再整理,即可解出x的值.【详解】如下表,设其中4个方框中的数分别为b、c、d、e.根据题意可列方程组: ,整理得:,即,∴,解得:.故答案为:-4.【点睛】本题考查二元一次方程组的应用.理解题意,列出等式是解答本题的关键.14.46【解析】【分析】根据题意,列二元一次方程组并求解,即可得到答案.【详解】根据题意,设分银子的人数为:x人,银子总共有y两∴ ②-①,得: 移项并合并同类项,得: ∴ 故答案为:46.【点睛】本题考查了二元一次方程组的应用;解题的关键是熟练掌握二元一次方程组的解法,从而完成求解.15.-3【解析】【分析】两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.【详解】解:两个方程相加得:3x+3y=3a+9,∵x、y互为相反数,∴x+y=0,∴3x+3y=0,∴3a+9=0,解得:a=-3,故答案为:-3.【点睛】本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关键.16.4:5【解析】【分析】设某超市第一周销售吉祥、如意、团圆三种年货礼包的数量为3a,a,4a,三种年货礼包的单价为b,5b,2b,则第一周销售额可得;设第二周如意年货礼包的销售数量为y,由于第二周礼包的单价在第一周的基础上上调,所以第二周礼包的单价为6y,销售额为6by,则团圆礼包第二周销售额为8by,利用已知条件列出方程求解即可【详解】解:设某超市第一周销售吉祥、如意、团圆三种年货礼包的数量为3a,a,4a,三种年货礼包的单价为b,5b,2b,则第二周三种年货的售价为:b,5b×1.2=6b,2b;设第二周三种年货的销量分别为x,y,z,∵如意礼包和团圆礼包的销售额之比是,∴ ∴ 第二周团圆包增加的销售额为: ∵团圆礼包增加的销售额占第二周总销售额,∴ ∴ ∵三种礼包的数量之和比第一周增加,∴ ∴ ∴ ∴团圆礼包第一周与第二周的数量之比为 故答案为:4:5【点睛】本题考查三元一次方程的应用;理解题意,能够通过所给的量之间的关系列出正确的方程是解题的关键.17.(1)(2)【解析】【分析】(1)利用加减消元法即可解得;(2)设设,,采用换元法解此方程组,可得 ,,据此即可解得.(1)解:,①×2-②,得3x=6,解得x=2,把x=2代入①,得y=3,故原方程组的解为;(2)解:设,,则原方程组的解为,①+②,得2a,解得a,把a代入①,得 ,解得b,∴ ,,解得,y,故原方程组的解为.【点睛】本题考查了二元一次方程组的解法,掌握和灵活运用二元一次方程组的解法是解决本题的关键.18.(1);(2).【解析】【分析】根据三元一次方程组的基本思路,通过“代入”或“加减生”进行消元,把“三元”化“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程,计算即可.【详解】解:⑴①+②得:5x-2z=14④①+③得:4x+2z=15⑤④+⑤得:9x=29解得:x=将x=代入④,得:5×-2z=14解得:z=将x=,z=代入③得:+y+=12解得:y=∴原方程组的解是⑵①+③×4得:17x+4y=85④②+③×(-3)得:-7x+y=-35⑤④-⑤×4得:45x=225解得:x=5将x=5代入⑤得:-7×5+y=-35解得:y=0将x=5,y=0代入③得:3×5+2×0-z=18解得:z=-3∴原方程组的解是【点睛】本题考查了三元一次方程组的解法,做题的关键是熟练的掌握三元一次方程组的解法思路,认真计算即可.19.10【解析】【分析】先根据题意将3x-2y=4和5y-x=3形成方程组,求出解,再将解代入另外两个方程,得到另一个方程组,求出m,n的值,进而求出待求式的值.【详解】解:由题意可知:,解得:,将代入,得,解得,∴3m+2n=12﹣2=10.【点睛】本题主要考查了解二元一次方程组,对于同解二元一次方程组的理解是解题的关键.20.(1)小颖家10月份峰时用电100度,谷时用电20度(2)在她用电量保持不变的情况下能节省电费5元.【解析】【分析】(1)设小颖家10月份峰时用电x度,谷时用电y度,根据“10月份用电120度,缴纳电费61元”列出二元一次方程组求解即可;(2)计算出变化后的电费,用61相减即可.(1)设小颖家10月份峰时用电x度,谷时用电y度,根据题意得, 解得, 答:小颖家10月份峰时用电100度,谷时用电20度(2) = =5(元)答:在她用电量保持不变的情况下能节省电费5元.【点睛】此题主要考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(1)该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;(2)a=10.【解析】【分析】(1)设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克,根据等量关系开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.列方程组,解方程组即可;(2)根据开心果涨价后销售价格×减少后销量+夏威夷果涨价后的销售价格×降低10%后的销量=12月份销售额+5900,列方程,然后解方程即可.(1)解:设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克根据题意,得,解得,答该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;(2)解:,整理得76500+1440a=90900,解得:a=10,经检验a=10是原方程的根,并符合题意.【点睛】本题考查列二元一次方程组解应用题,一元一次方程解销售问题应用题,掌握列二元一次方程组解应用题,一元一次方程解销售问题应用题的方法与步骤是解题关键.22.(1)(2)129.6元(3)57.5吨【解析】【分析】(1)根据“4月份用水20吨,交水费66元;5月份用水25吨,交水费91元”,列出方程组,即可求解;(2)用(30-17)×4.2加上17×2.2再加上超过30吨的部分的污水处理的费用再加上自来水销售费用,即可求解;(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,然后设林芳家七月份用水x吨,根据题意列出方程,即可求解.(1)解:(1)由题意得: ,解得 ;(2)(2)(30-17)×4.2+17×2.2+(32-30)×6+32×0.8=129.6(元). 答:当月交水费129.6元;(3)(3)由(2)知,用水32吨需交水费129.6元,因为303>129.6,所以林芳家7月份用水量超过30吨,设林芳家七月份用水x吨,则(30-17)×4.2+17×2.2+(x-30)×6+x×0.8=303(元),6.8x=391,解得:x=57.5,即七月份林芳家用水57.5吨.【点睛】本题主要考查了二元一次方程组和一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.23.(1)(2)证明见解析(3)或.【解析】【分析】(1)根据新定义分别求解即可;(2)设“万象数”为 则其为 则再计算其“格致数”,再利用乘法的分配律进行变形即可证明结论;(3)由是的倍数,可得是的倍数,结合的范围可得 从而得到或或或或 再求解方程符合条件的解,可得的值,结合是完全平方数,从而可得答案.(1)解:由新定义可得: 当时, 故答案为:(2)解:设“万象数”为 则其为 则而 所以其“格致数” 所以其“格致数”都能被9整除.(3)解:是的倍数,是的倍数,是的倍数, ,,,a,b,c为整数, 或或或或 或或或或或 而,的值为:或或或或或 是完全平方数,的值为:或.【点睛】本题考查的是新定义运算的理解与运用,同时考查了二元一次方程的非负整数解问题,理解新定义,逐步分析与运算是解本题的关键.bcde