![人教版数学九年级下册考点提分练习专题12 手拉手模型证相似(原卷版) 第1页](http://img-preview.51jiaoxi.com/2/3/16476740/0-1733363181235/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学九年级下册考点提分练习专题12 手拉手模型证相似(原卷版) 第2页](http://img-preview.51jiaoxi.com/2/3/16476740/0-1733363181274/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学九年级下册考点提分练习专题12 手拉手模型证相似(原卷版) 第3页](http://img-preview.51jiaoxi.com/2/3/16476740/0-1733363181301/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学九年级下册考点提分练习专题12 手拉手模型证相似(解析版) 第1页](http://img-preview.51jiaoxi.com/2/3/16476740/1-1733363196711/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学九年级下册考点提分练习专题12 手拉手模型证相似(解析版) 第2页](http://img-preview.51jiaoxi.com/2/3/16476740/1-1733363196744/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学九年级下册考点提分练习专题12 手拉手模型证相似(解析版) 第3页](http://img-preview.51jiaoxi.com/2/3/16476740/1-1733363196780/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:人教版数学九年级下册考点提分练习(2份,原卷版+解析版)
人教版数学九年级下册考点提分练习专题12 手拉手模型证相似(2份,原卷版+解析版)
展开
这是一份人教版数学九年级下册考点提分练习专题12 手拉手模型证相似(2份,原卷版+解析版),文件包含人教版数学九年级下册考点提分练习专题12手拉手模型证相似原卷版doc、人教版数学九年级下册考点提分练习专题12手拉手模型证相似解析版doc等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
专题12 手拉手模型证相似1.如图, SKIPIF 1 < 0 且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 、 SKIPIF 1 < 0 交于点 SKIPIF 1 < 0 .则下列四个结论中,① SKIPIF 1 < 0 ;② SKIPIF 1 < 0 ;③ SKIPIF 1 < 0 ;④ SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 四点在同一个圆上,一定成立的有 SKIPIF 1 < 0 SKIPIF 1 < 0 A.1个 B.2个 C.3个 D.4个【解答】解: SKIPIF 1 < 0 且 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故②正确; SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,故①正确; SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故③正确; SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 四点在同一个圆上,故④正确.故选: SKIPIF 1 < 0 .二.解答题(共15小题)2.如图,已知 SKIPIF 1 < 0 .求证: SKIPIF 1 < 0 .【解答】证明: SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 .3.如图,在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 .(1) SKIPIF 1 < 0 和 SKIPIF 1 < 0 相似吗?为什么?(2)如果 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 成立,据此你能说明 SKIPIF 1 < 0 和 SKIPIF 1 < 0 相似吗?【解答】解:(1) SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 .4.如图,在公共顶点为 SKIPIF 1 < 0 的 SKIPIF 1 < 0 与 SKIPIF 1 < 0 中,直角边 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 .求证: SKIPIF 1 < 0 .【解答】证明:如图,设 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,延长 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 四点共圆, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .5.如图, SKIPIF 1 < 0 与 SKIPIF 1 < 0 有公共的顶点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 .点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中点.(1)如图1,当 SKIPIF 1 < 0 时,猜想线段 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的数量关系,并说明理由;(2)如图2,当 SKIPIF 1 < 0 时,猜想线段 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的数量关系,并说明理由.【解答】解:(1) SKIPIF 1 < 0 .连接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ; SKIPIF 1 < 0 点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 根据中位线定理可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .(2) SKIPIF 1 < 0 .连接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 根据中位线定理可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 即得 SKIPIF 1 < 0 .6. SKIPIF 1 < 0 为等边三角形, SKIPIF 1 < 0 为 SKIPIF 1 < 0 边上一点, SKIPIF 1 < 0 为射线 SKIPIF 1 < 0 上一点, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .(1)求证: SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 并延长交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 并延长交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的长.【解答】(1)证明:如图1中,延长 SKIPIF 1 < 0 到 SKIPIF 1 < 0 ,使得 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .(2)解:如图2中,取 SKIPIF 1 < 0 的中点 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 ,作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 于 SKIPIF 1 < 0 .由(1)可知 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是平行四边形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .7.在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中点,连接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 .(1)如图1,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 的值是 SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 相交所成的较小角的度数为 ;(2)如图2,当 SKIPIF 1 < 0 时,求 SKIPIF 1 < 0 的值及直线 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 相交所成的较小角的度数;(3)如图3,当 SKIPIF 1 < 0 时,若点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,点 SKIPIF 1 < 0 在直线 SKIPIF 1 < 0 上,请直接写出点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 在同一直线上时 SKIPIF 1 < 0 的值.【解答】解:(1)如图1,连接 SKIPIF 1 < 0 ,并延长交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,设直线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的交点为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 是等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 是等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故答案为: SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)如图2,连接 SKIPIF 1 < 0 ,并延长交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,设直线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的交点为 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 直线 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 相交所成的较小角的度数为 SKIPIF 1 < 0 ;(3)如图3,当点 SKIPIF 1 < 0 在线段 SKIPIF 1 < 0 上时,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 、 SKIPIF 1 < 0 分别为 SKIPIF 1 < 0 、 SKIPIF 1 < 0 的中点, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 中点, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,当点 SKIPIF 1 < 0 在线段 SKIPIF 1 < 0 上时,同理可求 SKIPIF 1 < 0 ,综上所述: SKIPIF 1 < 0 的值为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .8.(1)如图①,将 SKIPIF 1 < 0 绕点 SKIPIF 1 < 0 旋转任意角度得到△ SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 、 SKIPIF 1 < 0 ,证明: SKIPIF 1 < 0 .(2)如图②,四边形 SKIPIF 1 < 0 和四边形 SKIPIF 1 < 0 均为正方形,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值.【解答】证明:(1) SKIPIF 1 < 0 将 SKIPIF 1 < 0 绕点 SKIPIF 1 < 0 旋转任意角度得到△ SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ;(2)连接 SKIPIF 1 < 0 和 SKIPIF 1 < 0 , SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 和四边形 SKIPIF 1 < 0 均为正方形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 . SKIPIF 1 < 0 . SKIPIF 1 < 0 SKIPIF 1 < 0 .9.在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 为 SKIPIF 1 < 0 边上一点,点 SKIPIF 1 < 0 , SKIPIF 1 < 0 分别在边 SKIPIF 1 < 0 , SKIPIF 1 < 0 上, SKIPIF 1 < 0 .(1)如图1,当 SKIPIF 1 < 0 为 SKIPIF 1 < 0 中点时, SKIPIF 1 < 0 SKIPIF 1 < 0 ;(2)如图2,若 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值.【解答】解:(1)过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 ,垂足为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 为 SKIPIF 1 < 0 中点, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,故答案为: SKIPIF 1 < 0 ;(2)过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 ,垂足为 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 的值为 SKIPIF 1 < 0 .10.已知:点 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 在同一条直线上, SKIPIF 1 < 0 ,线段 SKIPIF 1 < 0 、 SKIPIF 1 < 0 交于点 SKIPIF 1 < 0 .(1)如图1,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ①问线段 SKIPIF 1 < 0 与 SKIPIF 1 < 0 有怎样的数量关系?并说明理由;②求 SKIPIF 1 < 0 的大小(用 SKIPIF 1 < 0 表示);(2)如图2,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则线段 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的数量关系为 SKIPIF 1 < 0 , SKIPIF 1 < 0 (用 SKIPIF 1 < 0 表示);(3)在(2)的条件下,把 SKIPIF 1 < 0 绕点 SKIPIF 1 < 0 逆时针旋转 SKIPIF 1 < 0 ,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接 SKIPIF 1 < 0 并延长交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 .则 SKIPIF 1 < 0 (用 SKIPIF 1 < 0 表示).【解答】解:(1)如图1.① SKIPIF 1 < 0 ,理由如下: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,同理可得: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即: SKIPIF 1 < 0 .在 SKIPIF 1 < 0 与 SKIPIF 1 < 0 中, SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;② SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)如图2. SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,同理可得: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即: SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .在 SKIPIF 1 < 0 与 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ; SKIPIF 1 < 0 , SKIPIF 1 < 0 .故答案为: SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(3)如右图. SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,同理可得: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .在 SKIPIF 1 < 0 与 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .故答案为: SKIPIF 1 < 0 .11.若 SKIPIF 1 < 0 绕点 SKIPIF 1 < 0 逆时针旋转 SKIPIF 1 < 0 后,与 SKIPIF 1 < 0 构成位似图形,则我们称 SKIPIF 1 < 0 与 SKIPIF 1 < 0 互为“旋转位似图形”.(1)知识理解:如图1, SKIPIF 1 < 0 与 SKIPIF 1 < 0 互为“旋转位似图形”.①若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 SKIPIF 1 < 0 ;②若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 (2)知识运用:如图2,在四边形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 于点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求证: SKIPIF 1 < 0 与 SKIPIF 1 < 0 互为“旋转位似图形”.(3)拓展提高:如图3, SKIPIF 1 < 0 为等边三角形,点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 的中点,点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 边上的一点,点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 延长线上的一点,点 SKIPIF 1 < 0 在线段 SKIPIF 1 < 0 上,且 SKIPIF 1 < 0 与 SKIPIF 1 < 0 互为“旋转位似图形”.若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值.【解答】解:(1)① SKIPIF 1 < 0 和 SKIPIF 1 < 0 互为“旋转位似图形”, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;② SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故答案为: SKIPIF 1 < 0 ; SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 绕点 SKIPIF 1 < 0 逆时针旋转 SKIPIF 1 < 0 的度数后与 SKIPIF 1 < 0 构成位似图形, SKIPIF 1 < 0 和 SKIPIF 1 < 0 互为“旋转位似图形”; (3) SKIPIF 1 < 0 ,由题意得: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 由勾股定理可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 .12.(1)问题发现(1)如图1, SKIPIF 1 < 0 和 SKIPIF 1 < 0 均为等边三角形,直线 SKIPIF 1 < 0 和直线 SKIPIF 1 < 0 交于点 SKIPIF 1 < 0 .填空:① SKIPIF 1 < 0 的度数是 SKIPIF 1 < 0 ;②线段 SKIPIF 1 < 0 , SKIPIF 1 < 0 之间的数量关系为 ;(2)类比探究如图2, SKIPIF 1 < 0 和 SKIPIF 1 < 0 均为等腰直角三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 和直线 SKIPIF 1 < 0 交于点 SKIPIF 1 < 0 .请判断 SKIPIF 1 < 0 的度数及线段 SKIPIF 1 < 0 , SKIPIF 1 < 0 之间的数量关系,并说明理由.(3)解决问题如图3,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 边上, SKIPIF 1 < 0 于点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,将 SKIPIF 1 < 0 绕着点 SKIPIF 1 < 0 在平面内旋转,请直接写出直线 SKIPIF 1 < 0 经过点 SKIPIF 1 < 0 时,点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离.【解答】解:(1)如图1中, SKIPIF 1 < 0 和 SKIPIF 1 < 0 均为等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故答案为 SKIPIF 1 < 0 , SKIPIF 1 < 0 .(2)结论: SKIPIF 1 < 0 , SKIPIF 1 < 0 .理由:如图2中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .(3)如图3中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 四点共圆, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离等于 SKIPIF 1 < 0 .如图4中,当 SKIPIF 1 < 0 , SKIPIF 1 < 0 在同一直线上时,同法可知 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离等于 SKIPIF 1 < 0 .综上所述,点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离等于 SKIPIF 1 < 0 .13.如图,将 SKIPIF 1 < 0 绕点 SKIPIF 1 < 0 逆时针旋转 SKIPIF 1 < 0 后, SKIPIF 1 < 0 与 SKIPIF 1 < 0 构成位似图形,我们称 SKIPIF 1 < 0 与 SKIPIF 1 < 0 互为“旋转位似图形”.(1)知识理解:两个重合了一个顶点且边长不相等的等边三角形 是 (填“是”或“不是” SKIPIF 1 < 0 “旋转位似图形”;如图1, SKIPIF 1 < 0 和 SKIPIF 1 < 0 互为“旋转位似图形”,①若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ;②若 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ;(2)知识运用:如图2,在四边形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求证: SKIPIF 1 < 0 和 SKIPIF 1 < 0 互为“旋转位似图形”;(3)拓展提高:如图3, SKIPIF 1 < 0 为等腰直角三角形,点 SKIPIF 1 < 0 为 SKIPIF 1 < 0 中点,点 SKIPIF 1 < 0 是 SKIPIF 1 < 0 上一点, SKIPIF 1 < 0 是 SKIPIF 1 < 0 延长线上一点,点 SKIPIF 1 < 0 在线段 SKIPIF 1 < 0 上,且 SKIPIF 1 < 0 与 SKIPIF 1 < 0 互为“旋转位似图形”,若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,求出 SKIPIF 1 < 0 和 SKIPIF 1 < 0 的值.【解答】解:(1)两个重合了一个顶点且边长不相等的等边三角形,把其中一个三角形绕公共顶点旋转后构成位似图形,故它们互为“旋转位似图形”;① SKIPIF 1 < 0 和 SKIPIF 1 < 0 互为“旋转位似图形”, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;② SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故答案为:是; SKIPIF 1 < 0 ; SKIPIF 1 < 0 ;(2)证明: SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,又 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 和 SKIPIF 1 < 0 互为“旋转位似图形”;(3) SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,代入 SKIPIF 1 < 0 求得: SKIPIF 1 < 0 .如图3,过 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,根据勾股定理,得 SKIPIF 1 < 0 ;综上, SKIPIF 1 < 0 , SKIPIF 1 < 0 .14.已知正方形 SKIPIF 1 < 0 ,动点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上运动,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 射线 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 .(1)如图1,在 SKIPIF 1 < 0 上取一点 SKIPIF 1 < 0 ,使 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 ,求证: SKIPIF 1 < 0 ;(2)如图2,点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 延长线上,求证: SKIPIF 1 < 0 ;(3)如图3,若把正方形 SKIPIF 1 < 0 改为矩形 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,其他条件不变,请猜想 SKIPIF 1 < 0 , SKIPIF 1 < 0 和 SKIPIF 1 < 0 的数量关系,直接写出结论,不必证明.【解答】(1)证明: SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是正方形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)证明:如图2,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交 SKIPIF 1 < 0 的延长线于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是正方形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(3)解: SKIPIF 1 < 0 ;证明:如图3,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是矩形, SKIPIF 1 < 0 , SKIPIF 1 < 0 ,同(1)的方法得, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 四边形 SKIPIF 1 < 0 是矩形, SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 中,根据勾股定理得, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .15.(1)问题发现:如图1, SKIPIF 1 < 0 和 SKIPIF 1 < 0 均为等边三角形,点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 在同一直线上,连接 SKIPIF 1 < 0 .①线段 SKIPIF 1 < 0 , SKIPIF 1 < 0 之间的数量关系为 SKIPIF 1 < 0 ;② SKIPIF 1 < 0 的度数为 .(2)拓展探究:如图2, SKIPIF 1 < 0 和 SKIPIF 1 < 0 均为等腰直角三角形, SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 在同一直线上,连接 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的值及 SKIPIF 1 < 0 的度数;(3)解决问题:如图3,在正方形 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,若点 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,请直接写出点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离.【解答】解:(1)① SKIPIF 1 < 0 和 SKIPIF 1 < 0 均为等边三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;② SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;故答案为:① SKIPIF 1 < 0 ,② SKIPIF 1 < 0 ;(2) SKIPIF 1 < 0 和 SKIPIF 1 < 0 均为等腰直角三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(3) SKIPIF 1 < 0 点 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 点 SKIPIF 1 < 0 在以 SKIPIF 1 < 0 为圆心, SKIPIF 1 < 0 为半径的圆上, SKIPIF 1 < 0 , SKIPIF 1 < 0 点 SKIPIF 1 < 0 在以 SKIPIF 1 < 0 为直径的圆上, SKIPIF 1 < 0 如图3,点 SKIPIF 1 < 0 是两圆的交点,若点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 上方,连接 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,四边形 SKIPIF 1 < 0 是矩形, SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 中, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 或 SKIPIF 1 < 0 . SKIPIF 1 < 0 点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .16.图形的旋转变换是研究数学相关问题的重要手段之一.小华和小芳对等腰直角三角形的旋转变换进行研究.如图(1),已知 SKIPIF 1 < 0 和 SKIPIF 1 < 0 均为等腰直角三角形,点 SKIPIF 1 < 0 , SKIPIF 1 < 0 分别在线段 SKIPIF 1 < 0 , SKIPIF 1 < 0 上,且 SKIPIF 1 < 0 .(1)观察猜想小华将 SKIPIF 1 < 0 绕点 SKIPIF 1 < 0 逆时针旋转,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,如图(2),当 SKIPIF 1 < 0 的延长线恰好经过点 SKIPIF 1 < 0 时,① SKIPIF 1 < 0 的值为 SKIPIF 1 < 0 ;② SKIPIF 1 < 0 的度数为 度;(2)类比探究如图(3),小芳在小华的基础上,继续旋转 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 的延长线交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,请求出 SKIPIF 1 < 0 的值及 SKIPIF 1 < 0 的度数,并说明理由.(3)拓展延伸若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,当 SKIPIF 1 < 0 所在的直线垂直于 SKIPIF 1 < 0 时,请你直接写出 SKIPIF 1 < 0 的长.【解答】解:(1)如图(2)中,设 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 都是等腰直角三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,故答案为: SKIPIF 1 < 0 ,45.(2)如图(3)中,设 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 . SKIPIF 1 < 0 , SKIPIF 1 < 0 都是等腰直角三角形, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 .(3)如图(4) SKIPIF 1 < 0 中,当 SKIPIF 1 < 0 于 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .如图(4) SKIPIF 1 < 0 中,当 SKIPIF 1 < 0 时,延长 SKIPIF 1 < 0 交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 .同法可得 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,综上所述, SKIPIF 1 < 0 的长为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)