所属成套资源:人教版数学八年级上册同步讲练 (2份,原卷版+解析版)
人教版数学八年级上册同步讲练第13章第01讲 轴对称(2份,原卷版+解析版)
展开
这是一份人教版数学八年级上册同步讲练第13章第01讲 轴对称(2份,原卷版+解析版),文件包含人教版数学八年级上册同步讲练第13章第01讲轴对称原卷版docx、人教版数学八年级上册同步讲练第13章第01讲轴对称解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
第01讲 轴对称 知识点01 轴对称图形的概念 轴对称图形的概念: 若一个图形沿着某条直线对折,直线两旁的部分能够 ,则这个图形是一个轴对称图形。这条直线叫做轴对称图形的 。可以有多条对称轴。题型考点:①轴对称图形的判断。②对称轴的判断。【即学即练1】1.下列交通安全图标不是轴对称图形的是( )(图中的三角形是等边三角形)A. B. C. D.【即学即练2】2.圆是轴对称图形,它的对称轴有( )A.1 条 B.2条 C.4 条 D.无数条知识点02 轴对称轴对称的概念: 一个图形沿着某一条直线对折与另一个图形能够 ,则这两个图形的位置关系成轴对称。这条直线是轴对称的 。只有一条对称轴。 重合的边叫做 ,重合的角叫做 。重合的点叫做 。 注意:轴对称图形是一个图形的形状特点,轴对称是两个图形的形状特点加上位置特点构成。 题型考点:①判断轴对称。【即学即练1】3.下列选项中左右两图成轴对称的为( )A. B. C. D.知识点03 轴对称与轴对称图形的性质轴对称与轴对称图形的性质: ①轴对称图形对称轴两旁的部分 ,成轴对称的两个图形 。 ②对应边 ,对应角 。对应边若不与对称轴平行,则延长线的交点一定交于对称轴上。 ③对称轴经过任何一组对应点连线的 且与线段 。 ④对应点的连线之间相互 。 题型考点:①对性质的理解。②利用性质计算。【即学即练1】4.如图,△ABC和△A′B′C′关于直线对称,下列结论中:①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,正确的有( )A.4个 B.3个 C.2个 D.1个【即学即练2】5.如图,△ABC与△A′B′C′关于直线l对称,∠A=50°,∠C′=30°,则∠B的度数为( ) 第5题 第6题A.90° B.100° C.70° D.80°【即学即练3】6.如图,△ABC中,直线DE是AB边的对称轴,交AC于D,交AB于E,如果BC=6,△BCD的周长为17,那么AC边的长是 .知识点04 垂直平分线垂直平分线的定义: 过线段的 且与线段 的直线是这条线段的垂直平分线。如图,若C点事AB的中点,则MN是线段AB的垂直平分线。垂直平分线的性质: ①垂直平分线 线段。则∠PCA=∠PCB= , AC BC。 ②垂直平分线上任意一点到线段两端点的距离 。即PA PB。所以△PAB是等腰三角形。 在Rt△PAC与Rt△PBC中 ∴Rt△PAC≌Rt△PBC ∴∠A ∠B;∠APC ∠BPC。垂直平分线的判定 到线段两端点距离相等的点一定在这条线断的 上。 题型考点:①利用垂直平分线的性质求值。②垂直平分线的判定。【即学即练1】7.如图:Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B的度数为( )A.20° B.22.5° C.25° D.30°【即学即练2】8.如图所示,在△ABC中,AB的垂直平分线交AC于点E,若AE=,则BE两点间的距离是( )A. B. C. D.【即学即练3】9.如图,DE是△ABC的边BC的垂直平分线,若AC=8,AB=6,BC=4,则△ADB的周长为( )A.14 B.13 C.12 D.10【即学即练4】10.已知:如图,在△ABC中,∠BAC=90°,BD平分∠ABC,DE⊥BC于E.证明:BD垂直平分AE.题型01 轴对称与轴对称图形的判断【典例1】下列图形中,不是轴对称图形的是( )A. B. C. D.【典例2】下列四个图形中,是轴对称图形的是( )A. B. C. D.【典例3】将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到( )A. B. C. D.【典例4】观察下图中各组图形,其中成轴对称的为 (只写序号1,2等).题型02 轴对称的规律题【典例1】如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个球袋,如果一个球从A(﹣2,0)按照图中所示的方向被击出(球可以经过多次反射),第一次碰到桌面B的坐标是(0,2),则该球第二次碰到台球桌面的坐标是 (2,0) ,该球最后落入的球袋是 2 号袋.【典例2】如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(﹣2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2020的坐标是( )A.(0,1) B.(﹣2,4) C.(﹣2,0) D.(0,3)【典例3】在桌球运动中,正面击球时球碰到球桌边缘会发生反弹,如图建立平面直角坐标系,动点P从(0,2)出发,沿如图所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角.当点P第2022次碰到长方形的边时,点P2022的坐标为 . 【典例4】如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为Pn,则点P2021的坐标为 .【典例5】如图所示,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为Pn,则点P2021的坐标是 . 题型03 轴对称的性质理解【典例1】如图,△ABC与△A'B'C'关于直线MN对称,BB'交MN于点O,下列结论:①AB=A'B';②OB=OB′;③AA'∥BB'中,正确的有( )A.3个 B.2个 C.1个 D.0个【典例2】如图,△ABC与△A′B′C′关于直线l对称,连接AA′交对称轴l于点M,若∠A=50°,∠C′=30°,则下列说法不正确的是( )A.三角形ABC与三角形A′B′C′的周长相等 B.AM=A′M且AA′⊥l C.∠B=100° D.连接BB′,CC′,则AA′,BB′,CC′三条线段不仅平行而且相等【典例3】如图,△ABC和△A'B'C'关于直线l对称,下列结论:(1)△ABC≌△A'B'C';(2)∠BAC=∠B'A'C';(3)直线l垂直平分CC';(4)直线l平分∠CAC'.正确的有( )A.1个 B.2个 C.3个 D.4个题型04 利用轴对称的性质计算【典例1】如图,△ABC与△A'B'C'关于直线l对称,则AC=( )A.A'B' B.B'C' C.BC D.A'C'【典例2】如图,△ABC与△A'B'C'关于直线l对称,∠A=54°,∠C'=26°,则∠B等于( )A.36° B.154° C.80° D.100°【典例3】如图,在△ABC中,∠A=30°,∠B=50°,将点A与点B分别沿MN和EF折叠,使点A、B与点C重合,则∠NCF的度数为( )A.18° B.19° C.20° D.21°【典例4】在折纸游戏中,小颖将一张长方形纸片ABCD按如图所示方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=12°,则∠EAF的度数为 .【典例5】 如图,AD所在直线是△ABC的对称轴,点E,F是AD上的两点,若BD=3,AD=6,则图中阴影部分的面积是 .题型05 利用垂直平分线的性质计算【典例1】如图,△ABC中,BC的垂直平分线l与AC相交于点D,若△ABD的周长为12cm,则AB+AC= cm.【典例2】如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是( )A.8 B.6 C.4 D.2【典例3】如图,在△ABC中,AB的垂直平分线分别交AB,BC于点D,E,AC的垂直平分线分别交AC,BC于点F,G,且△AEG的周长是20,则线段BC的长为( )A.40 B.20 C.15 D.10【典例4】如图,在△ABC中,AB=AC,∠A=42°,AB的垂直平分线MN交AC于D点,连接BD,则∠DBC的度数是( )A.22° B.27° C.32° D.40°【典例5】如图,在△ABC中,∠ABC=52°,P为△ABC内一点,过点P的直线MN分别交AB、BC于点M,N,若M在PA的垂直平分线上,N在PC的垂直平分线上,则∠APC的度数为( )A.115° B.116° C.117° D.118°【典例6】如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=20°,则∠EFB的度数为( )A.56° B.58° C.60° D.63°【典例7】如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为( )厘米.A.16 B.18 C.26 D.28【典例8】如图,在△ABC中,AB的垂直平分线分别交BC,AB于D,E两点,若AE=3cm,△ADC的周长为9cm,则△ABC的周长是( )A.6cm B.12cm C.15cm D.24cm【典例9】如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为( )A.3cm B.4cm C.5cm D.6cm1.下列倡导节约的图案中,是轴对称图形的是( )A. B. C. D.2.如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是( )A.1号袋 B.2号袋 C.3号袋 D.4号袋3.如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,下列说法不正确的是( )A.AP=A′P B.MN垂直平分A A′,C C′ C.这两个三角形的面积相等 D.直线AB,A′B′的交点不一定在MN上4.如图,直线l,m相交于点O,P为这两直线外一点,且OP=3,若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是( )A.0 B.5 C.6 D.75.如图,在△ABC中,AD⊥BC,垂足为D,△ADB与△ADB′关于直线AD对称,点B的对称点B′落在BC边上.若∠C=2∠B′AC,AB′平分∠DAC,则∠B的度数为( )A.67.5° B.50° C.45° D.22.5°6.如图所示,将∠A沿着BC折叠到∠A所在平面内,点A的对应点是A',若∠A=54°,则∠1+∠2=( )A.144° B.108° C.72° D.54°7.如图,四边形ABCD为一矩形纸带,点E、F分别在边AB、CD上,将纸带沿EF折叠,点A、D的对应点分别为A'、D',若∠2=α,则∠1的度数为( )A.2α B.90°﹣α C. D.8.如图,在△ABC中,∠BAC=120°,分别作AC,AB两边的垂直平分线PM、PN,垂足分别是点M、N,以下说法:①∠P=60°;②∠EAF=∠B+∠C;③PE=PF;④点P到点B和点C的距离相等,其中正确的是( )A.①②③ B.①②④ C.①③④ D.②③④9.已知O为三边垂直平分线交点,∠BAC=70°,则∠BOC= .10.如图,在△ABC中,∠BAC>90°,AB的垂直平分线交BC于点E,AC的垂直平分线交BC于点F,连接AE,AF,若△AEF的周长为7,则BC的长是( )A.7 B.8 C.9 D.无法确定11.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.已知△ADE的周长为11cm,分别连接OA、OB、OC,若△OBC的周长为23cm,则OA的长为 . 第11题 第12题12.如图,AE是∠CAM的角平分线,点B在射线AM上,DE是线段BC的中垂线交AE于E,过点E作AM的垂线交AM于点F.若∠ACB=26°,∠EBD=25°,则∠AED= .13.如图,在△ABC中,点E是BC边上的一点,连接AE,BD垂在平分AE,垂足为F,交AC于点D.连接DE.(1)若△ABC的周长为19,△DEC的周长为7,求AB的长.(2)若∠ABC=30°,∠C=15°,求∠CDE的度数.14.如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.(1)若BC=9,求△AEG的周长.(2)若∠BAC=130°,求∠EAG的度数.15.有一张正方形纸片ABCD,点E是边AB上一定点,在边AD上取点F,沿着EF折叠,点A落在点A′处,在边BC上取一点G,沿EG折叠,点B落在点B′处.(1)如图,当点B′落在直线A′E上时,猜想两折痕的夹角∠FEG的度数并说明理由.(2)当∠A′EB′=∠B′EB时,设∠A′EB′=x.①试用含x的代数式表示∠FEG的度数.②探究EB′是否可能平分∠FEG,若可能,求出此时∠FEG的度数;若不可能,请说明理由.课程标准学习目标①轴对称与轴对称图形的概念②轴对称与轴对称图形的性质③线段的垂直平分线认识轴对称与轴对称图形的概念,并能够熟练判断。掌握轴对称与轴对称图形的性质,并能够熟练应用其解决相关题目。掌握垂直平分线的定义,性质,判定,并能够熟练应用垂直平分线的性质与判定。