所属成套资源:人教版数学八年级上册同步讲练 (2份,原卷版+解析版)
人教版数学八年级上册同步讲练第13章第02讲 画轴对称图形(2份,原卷版+解析版)
展开
这是一份人教版数学八年级上册同步讲练第13章第02讲 画轴对称图形(2份,原卷版+解析版),文件包含人教版数学八年级上册同步讲练第13章第02讲画轴对称图形原卷版docx、人教版数学八年级上册同步讲练第13章第02讲画轴对称图形解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
第02讲 轴对称作图知识点01 轴对称作图与轴对称图形作图轴对称与轴对称图形的作图:具体步骤:找图形的 。过关键点作对称轴的 并延长,使延长部分的长度等于关键点到 的长度,从而得到关键点的 。(3)按照 连接各对应点。题型考点:①作图。【即学即练1】1.如图,以直线l为对称轴,画出轴对称图形的另一半.【即学即练2】2.如图,△ABC的三个顶点的坐标分别为A(﹣4,1),B(﹣1,﹣1),C(﹣3,2).(1)已知△ABC和△A1B1C1关于x轴对称,点A1,B1,C1分别是点A,B,C的对称点,请直接写出点A1,B1,C1的坐标;(2)在图中画出△ABC关于y轴对称的△A2B2C2.知识点02 画轴对称与轴对称图的对称轴垂直平分线的画法: 具体步骤:如图①:分别以线段AB两端点为 ,大于线段长度的 为半径画圆弧。两弧分别交于两点M,N。如图②,连接MN,MN所在直线即为线段AB的垂直平分线。垂直平分线的证明: 如图③,连接MA,MB,NA,NB。 由作图过程可知 MA=MB=NA=NB 在△MAN与△MBN中 ∴△MAN≌△MBN ∴∠AMO=∠BMO 在△AMO与△BMO中 ∴△AMO≌△BMO ∴OA=OB,∠AOM=∠BPM=90° ∴MN垂直平分AB。对称轴的画法:对称轴过任意一组对应点连线的中点且与线段垂直,所以对称轴是任意一组对应点的垂直平分线。作对称轴即是作任意一组对应点的垂直平分线。按照垂直平分线的作图即可。 题型考点:①尺规作图垂直平分线。②根据作图痕迹求解题目。③画对称轴。【即学即练1】3.如图所示,一辆汽车在笔直的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,请利用尺规作图法,在AB上找一点C,使得汽车行驶到C处时,到村庄M,N的距离相等.(保留作图痕迹,不写作法)【即学即练2】4.如图,在△ABC中,∠C=90°,AC=3,BC=4,分别以A、B为圆心,AC为半径画弧,两弧分别交于E、F,直线EF交BC于点D,连接AD,则△ACD的周长等于( )A.7 B.8 C.9 D.【即学即练3】5.如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若△CDB的面积为12,△ADE的面积为9,则四边形EDBC的面积为( )A.15 B.16 C.18 D.20【即学即练4】6.如图,两个三角形成轴对称,画出对称轴.知识点03 用坐标表示轴对称关于坐标轴对称的点的坐标特点:点P(x,y)关于x轴对称的点的坐标为 。 点P(x,y)关于y轴对称的点的坐标为 。关于x=m或y=m对称的点的坐标:P(a,b)关于直线x=m对称的点的坐标为 。 P(a,b)关于直线y=m对称的点的坐标为 。 题型考点:根据坐标特点求坐标。【即学即练1】7.已知点A(a,4)与点B(﹣2,b)关于x轴对称,则a+b=( )A.﹣6 B.6 C.2 D.﹣2【即学即练2】8.已知点A(m,2021)与点B(2022,n)关于y轴对称,则m+n的值为( )A.﹣1 B.1 C.4043 D.﹣2022【即学即练3】9.已知点A(4,﹣3)和点B是坐标平面内的两个点,且它们关于直线x=2对称,则平面内点B的坐标为( )A.(0,﹣3) B.(4,﹣9) C.(4,0) D.(﹣10,3)【即学即练4】 10.如图,已知直线l经过点(0,﹣1)并且垂直于y轴,若点P(﹣3,2)与点Q(a,b)关于直线l对称,则a+b= .题型01 轴对称与轴对称图形的作图与计算【典例1】如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;(2)在图中,若B2(﹣4,2)与点B关于一条直线成轴对称,则这条对称轴是 ,此时C点关于这条直线的对称点C2的坐标为 ;(3)求△A1B1C1的面积.【典例2】如图,在由边长为1个单位的小正方形组成的网格中,三角形ABC的顶点均为格点(网格线的交点).(1)作出三角形ABC关于直线MN的轴对称图形三角形A1B1C1;(2)求三角形A1B1C1的面积;(3)在直线MN上找一点P使得三角形BAC的面积等于三角形PAC的面积.【典例3】如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.【典例4】如图,在正方形网格中,每个小正方形的边长都是1,每个小正方形的顶点叫做格点.网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)画出△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.题型02 垂直平分线的作图【典例1】如图,在△ABC中,∠C=90°.用直尺和圆规在边BC上确定一点P,使点P到点A、点B的距离相等,则符合要求的作图痕迹是( )A. B. C. D.【典例2】如图,已知△ABC,请用尺规作图法在BC边上找一点D,使得点D到A、B两点距离相等.(不写作法,保留作图痕迹)【典例3】(1)图1是小正方形的边长均为1的方格纸,请你涂出一个图形(所有顶点都在格点上),使其满足如下条件:①图形的面积为7;②图形是轴对称图形.(2)如图2,一条笔直的公路MN同一侧有两个村庄A和B,现准备在公路MN上修一个公共汽车站点P,使站点P到两个村庄A和B的距离相等.请你用尺规作图找出点P的位置,不写作法,保留作图痕迹.【典例4】如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要在∠AOB内部修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)题型03 利用垂直平分线的作图痕迹解题【典例1】如图,在△ABC中,分别以A,C为圆心,大于AC长为半径作弧,两弧分别相交于M,N两点,作直线MN,分别交线段BC,AC于点D,E,若AE=3cm,△ABD的周长为10cm,则△ABC的周长为( )A.13cm B.14cm C.15cm D.16cm【典例2】如图,△ABC中,∠B=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN,分别交AB,AC于点E和点F.若BC=3,AB=9,则BE的长为( )A.3 B.4 C.5 D.6【典例3】如图,在Rt△ABC中,分别以B,C为圆心,大于的长为半径画弧,两弧交于点P,Q,作直线PQ,分别交BC,AC于点D,E,连接BE.若∠EBD=32°,则∠A的度数为( )A.50° B.58° C.60° D.64°【典例4】如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.已知△CDE的面积比△CDB的面积小5,则△ADE的面积为( )A.5 B.4 C.3 D.2题型04 关于坐标轴对称的点的坐标【典例1】点(3,﹣2)关于x轴的对称点是( )A.(﹣3,﹣2) B.(3,2) C.(﹣3,2) D.(3,﹣2)【典例2】在平面直角坐标系中,点P(a,3)与点Q(﹣2,b)关于x轴对称,则a﹣b的值为( )A.1 B.﹣1 C.5 D.﹣5【典例3】已知点P(a,3)和点Q(4,b)关于x轴对称,则a+b的值为( )A.1 B.﹣1 C.7 D.﹣7【典例4】在平面直角坐标系中,点P(4,1)关于y轴对称的点的坐标是( )A.(4,1) B.(﹣4,﹣1) C.(﹣4,1) D.(4,﹣1)【典例5】若点M(a,﹣1)与点N(﹣2,b)关于y轴对称,则(a+b)2022的值是( )A.2022 B.﹣2022 C.1 D.﹣1【典例6】已知点A(4,a﹣5)与点B(b﹣1,﹣3)关于y轴对称,则ab的值为( )A.﹣6 B.﹣8 C. D.﹣题型05 关于直线对称的点的坐标【典例1】点(2,5)关于直线x=1的对称点的坐标为 .【典例2】点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是( )A.关于x轴对称 B.关于y轴对称 C.关于直线x=2对称 D.关于直线y=2对称【典例3】若点A(a,4)在第二象限,则点A关于直线m(直线m上各点的横坐标都是2)对称的点坐标是( )A.(﹣a,4) B.(4﹣a,4) C.(﹣a﹣4,﹣4) D.(﹣a﹣2,﹣4)【典例4】点(1,2m﹣1)关于直线x=m的对称点的坐标是( )A.(2m﹣1,1) B.(﹣1,2m﹣1) C.(﹣1,1﹣2m) D.(2m﹣1,2m﹣1)1.在平面直角坐标系中,点P(﹣3,4)关于y轴的对称点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图,在3×3的正方形网格中有四个格点A、B、C、D,以其中一点为原点,网格线所在直线为坐标轴建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是( )A.A B.B C.C D.D3.已知:点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,则(m+n)的值为( )A.0 B.1 C.﹣1 D.34.如图,在△ABC中,∠B=30°,∠C=50°,请观察尺规作图的痕迹(D,E,F分别是连线与△ABC边的交点),则∠DAE的度数是( ) 第4题 第5题A.25° B.30° C.35° D.40°5.如图,在△ABC中,结合尺规作图的痕迹,已知AD=2cm,△ABE的周长为14cm,则△ABC的周长是( )A.17cm B.18cm C.19cm D.20cm6.如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是( )A.AD=BD B.BD=CD C.∠A=∠BED D.∠ECD=∠EDC7.剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(m,1),其关于y轴对称的点F的坐标(2,n),则(m+n)2022的值为( )A.1 B.﹣1 C.32022 D.08.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若点C坐标是(6,2),则经过第2022次变换后,点C的对应点的坐标为( )A.(﹣6,﹣2) B.(6,﹣2) C.(﹣6,2) D.(6,2)9.把点A(a+2,a﹣1)向上平移3个单位,所得的点与点A关于x轴对称,则a的值为 .10.如图,在△ABC中,AB=10,BC=6,AC=8,分别以点A,点B为圆心,大于的长为半径画弧,两弧相交于点M,N,作直线MN交AC于点D,则线段CD的长为 .11.如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,大于的长为半径画弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD.若∠B=24°,则∠CDA的度数为 .12.已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则,.在平面直角坐标系中有三个点A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且PA=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,则点P2023的坐标是 (2,﹣4) .13.如图所示,由每一个边长均为1的小正方形构成的正方形网格中,△ABC的顶点A,B,C均在格点上(小正方形的顶点为格点),利用网格画图,(保留必要的画图痕迹)(1)在直线AC上找一点P,使得点P到点B,C的距离相等;(2)在图中找一点O,使得OA=OB=OC;(3)在(1)、(2)小题的基础上,请在直线AB上确定一点M,使MP+MO的值最小.14.如图,在平面直角坐标系xOy中,A(﹣3,4),B(﹣4,1),C(﹣1,1).(1)点A关于y轴的对称点的坐标为 (3,4) ;(2)请画出△ABC关于x轴对称的图形△A1B1C1;(3)将△ABC向右平移2个单位,向下平移1个单位,它的像是△A2B2C2,请写出△A2B2C2的顶点坐标.15.已知,如图,在△ABC中,AD是∠BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.以直线CH为对称轴作点A的对称点P,连接CP(1)依题意补全图形;(2)直接写出AB与CP的位置关系;(3)用等式表示线段AH与AB+AC之间的数量关系,并证明.课程标准学习目标①轴对称与轴对称图形作图②画对称轴③用坐标表示轴对称掌握轴对称与轴对称图形的作图,能够熟练的作出轴对称与轴对称图形的另一半。掌握对称轴的画法,能够数量画出轴对称与轴对称图形的对称轴。掌握点关于坐标轴对称以及关于特殊直线对称的对称特点,熟练应用其应用。