所属成套资源:苏科版数学八上期末专题复习专题 (2份,原卷版+解析版)
苏科版数学八上期末专题复习专题05 翻折变换精选(2份,原卷版+解析版)
展开
这是一份苏科版数学八上期末专题复习专题05 翻折变换精选(2份,原卷版+解析版),文件包含苏科版数学八上期末专题复习专题05翻折变换精选原卷版doc、苏科版数学八上期末专题复习专题05翻折变换精选解析版doc等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
1.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长.
2.如图,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的Bˊ点,AE是折痕.
(1)试判断BˊE与DC的位置关系.
(2)如果∠C=140°,求∠AEB的度数.
3.生活中,有人喜欢把传送的便条折成“”形状,折叠过程按图①、②、③、④的顺序进行(其中阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为26厘米,分别回答下列问题:
(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BE= 厘米;在图④中,BM= 厘米.
(2)如果长方形纸条的宽为x厘米,现不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(结果用x表示).
4.如图,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,求;
(1)线段BF的长;
(2)线段EC的长.
5.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A′恰好落在∠BCD 的平分线上时,CA′的长为多少?
6.在数学实验课上,李静同学剪了两张直角三角形纸片,进行了如下的操作:
操作一:如图1,将Rt△ABC纸片沿某条直线折叠,使斜边两个端点A与B重合,折痕为DE.
(1)如果AC=5cm,BC=7cm,可得△ACD的周长为 ;
(2)如果∠CAD:∠BAD=1:2,可得∠B的度数为 ;
操作二:如图2,李静拿出另一张Rt△ABC纸片,将直角边AC沿直线CD折叠,使点A与点E重合,若AB=10cm,BC=8cm,请求出BE的长.
7.如图,在矩形纸片ABCD中,AB=6,BC=8将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连接AE.
(1)证明:BF=DF;
(2)求AF的值;
(3)求△DBF的面积.
8.如图,在长方形ABCD中,AB=6,AD=8,E、F分别是BC、CD上的一点,EF⊥AE,将△ECF沿EF翻折得到ΔEC′F,连接AC′.若△AEC′是等腰三角形,且AE=AC′,则BE= .
9.如图①所示,在三角形纸片ABC中,∠C=70°,∠B=65°,将纸片的一角折叠,使点A落在△ABC内的点A'处.
(1)若∠1=40°,∠2= .
(2)如图①,若各个角度不确定,试猜想∠1,∠2,∠A之间的数量关系,直接写出结论.
②当点A落在四边形BCDE外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,∠A,∠1,∠2之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的∠1+∠2+∠3+∠4+∠5+∠6和是 .
10.如图所示,有一块直角三角形纸片,∠C=90°,AB=5cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CD的长为( )
A.1cmB.cmC.1.5cmD.cm
11.如图,在Rt△ABC中,∠B=90°,AB=8,BC=6,延长BC至E,使得CE=BC,将△ABC沿AC翻折,使点B落点D处,连接DE,则DE的长为( )
A.B.C.D.
12.如图,在Rt△ABC中,∠ACB=90°,BC=6,点D为斜边AB上的一点,连接CD,将△BCD沿CD翻折,使点B落在点E处,点F为直角边AC上一点,连接DF,将△ADF沿DF翻折,点A恰好与点E重合.若DC=5,则AF= .
13.如图,△ABC中,AB=12,AC=16,BC=20.将△ABC沿射线BM折叠,使点A与BC边上的点D重合,E为射线BM上一个动点,当△CDE周长最小时,CE的长为 .
14.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长度为 .
15.长方形纸片ABCD的边AB=6cm,AD=10cm,将纸片沿着AC折叠,点D落在点D'处,且AD'与BC交于点E,求BE的长.
16.已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.点D恰为AB的中点,DE=2,求△ABC的周长.
17.如图,把长方形ABCD沿AC折叠,AD落在AD′处,AD′交BC于点E,已知AB=2cm,BC=4cm.(长方形的对边相等,四个角都为直角)
(1)求证:AE=EC;
(2)求EC的长;
(3)求重叠部分的面积.
18.如图,有一块直角三角形纸片,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为 .
19.如图,在Rt△ABC中,∠C=90°,沿过点A的一条直线AE折叠Rt△ABC,使点C恰好落在AB边的中点D处,则∠B的度数是 .
20.如图,折叠等腰三角形纸片ABC,使点C落在边AB上的点F处,折痕为DE.已知AB=AC,FD⊥BC.
(1)求证:∠AFE=90°;
(2)如果AF=3,BF=6,求AE的长.
21.如图,在△ABC中,∠C=90°,AC=5cm,BC=12cm,将△ABC沿过A点的直线折叠,使点C落在AB边上的点D处,折痕与BC交于点E.
(1)试用尺规作图作出折痕AE;(要求:保留作图痕迹,不写作法.)
(2)连接DE,求线段DE的长度.
22.如图,长方形ABCD的纸片,长AD=10厘米,宽AB=8厘米,AD沿点A对折,点D正好落在BC上的点F处,AE是折痕.
(1)图中有全等的三角形吗?如果有,请直接写出来;
(2)求线段BF的长;
(3)求线段EF的长.
23.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=106°,∠C=35°,求∠2的度数.
24.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于( )
A.2B.C.D.
25.如图,点D为△ABC边AB的中点,将△ABC沿经过点D的直线折叠,使点A刚好落在BC边上的点F处,若∠B=44°,则∠BDF的度数为( )
A.86°B.88°C.90°D.92°
26.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为 .
27.已知:如图,将矩形纸片ABCD沿对角线BD对折,点C落在点E的位置,AD与BE相交于点F.
(1)求证:△BDF是等腰三角形;
(2)若AB=8,AD=10,求BF的长.
28.在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.
(1)如图1,∠B=70°,∠C=30°,求∠DAE的度数.
(2)若∠B=α,∠DAE=10°,则∠C=
(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.
29.如图,点A、B、C、O在网格中小正方形的顶点处,直线l经过点C、O,将△ABC沿l平移得到△MNO,M是A的对应点,再将这两个三角形沿l翻折,P、Q分别是M、A的对应点.已知网格中每个小正方形的边长都等于1,则PQ2的值为 .
30.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将纸片折叠,使点B落在点A上,折痕为DE,则CD的长为 cm.
相关试卷
这是一份中考数学重难点专题题位训练及押题预测专题28解答题重点出题方向图形的翻折与旋转变换(原卷版+解析),共89页。试卷主要包含了2022中考真题集训,图形的旋转等内容,欢迎下载使用。
这是一份中考数学重难点专题题位训练及押题预测专题9填空题压轴题之图形变换问题(平移翻折旋转)(原卷版+解析),共70页。试卷主要包含了2022中考真题集训等内容,欢迎下载使用。
这是一份八年级数学下册专题02勾股定理中的翻折模型(原卷版+解析),共60页。