搜索
    上传资料 赚现金
    英语朗读宝

    北师大版数学九上专题1.24 特殊平行四边形折叠专题(基础篇)(专项练习)(含答案)

    北师大版数学九上专题1.24 特殊平行四边形折叠专题(基础篇)(专项练习)(含答案)第1页
    北师大版数学九上专题1.24 特殊平行四边形折叠专题(基础篇)(专项练习)(含答案)第2页
    北师大版数学九上专题1.24 特殊平行四边形折叠专题(基础篇)(专项练习)(含答案)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北师大版数学九上专题1.24 特殊平行四边形折叠专题(基础篇)(专项练习)(含答案)

    展开

    这是一份北师大版数学九上专题1.24 特殊平行四边形折叠专题(基础篇)(专项练习)(含答案),共32页。
    专题1.24 特殊平行四边形折叠专题(基础篇)(专项练习)一、单选题【知识点一】菱形折叠问题1.如图,将长方形纸片折叠,使A点落BC上的F处,折痕为BE,若沿EF剪下,则折叠部分是一个正方形,其数学原理是(       )A.邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.两个全等的直角三角形构成正方形D.轴对称图形是正方形2.如图,将矩形纸片按如图所示的方式折叠,得到菱形,若,则的长为(       )A.2 B. C.4 D.3.如图,把菱形沿折叠,使点落在上的点处,若,则的大小为(       ).A. B. C. D.4.如图,在菱形纸片中,,点是边上的一点,将纸片沿折叠,点落在处,恰好经过的中点,则的度数是(       )A. B. C. D.【知识点二】矩形将折叠问题5.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为(     )A.28° B.31° C.62° D.56°6.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为(     )A. B. C.3 D.47.如图,把矩形OABC放入平面直角坐标系中,点B的坐标为(10,8),点D是OC上一点,将△BCD沿BD折叠,点C恰好落在OA上的点E处,则点D的坐标是(  )A.(0,4) B.(0,5)C.(0,3) D.(0,2)8.如图,将矩形ABCD沿EF折叠,使点B落在边AD上的点M处,点C落在点N处,已知∠DMN=30°,连接BM,则∠AMB的度数为(  )A.60° B.75° C.80° D.85°【知识点三】正方形折叠问题9.如图,将正方形纸片ABCD折叠,使顶点B落在边AD上的点E处,折痕交AB于点F,交CD于点G.若,,则AB的长为(       )A.2 B. C. D.10.如图,AC是正方形ABCD的对角线,E是BC上的点,,将沿AE折叠,使点B落在AC上点F处,则AB的长为(       )A.2 B.3 C. D.11.把一个面积为4的正方形,通过沿虚线折叠得到一个新正方形,它的边长是(       )A.2 B. C.1 D.1.41412.将一张正方形纸片ABCD按如图所示的方式折叠,CE、CF为折痕,点B、D折叠后的对应点分别为B'、D',若∠ECF=21°,则∠B'CD'的度数为(  )A.35° B.42° C.45° D.48°二、填空题【知识点一】菱形折叠问题13.如图,在菱形纸片中,,折叠菱形纸片,使点落在(为的中点)所在的直线上,得到经过点的折痕,则的度数为________.14.如图,在菱形中,是上一点,沿折叠,点恰好落在上的点处,连接,若,则__________.15.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为_____.16.如图,将平行四边形进行折叠,折叠后恰好经过点C得到,若,则线段的长度为_________.【知识点二】矩形将折叠问题17.如图所示,把一张矩形纸片按如图所示方法进行两次折叠,得到等腰Rt△ABC,若S△ABC=2,则S△ACD=__.18.如图,将矩形纸片ABCD折叠(AD>AB),使AB落在AD上,AE为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将BE边折起,使点B落在AE上的点G处,连接DE,若DE=EF,CE=1,则AD=________.19.如图,在矩形ABCD中,AB=4,BC=6,点E是BC的中点,点F在AD上运动,沿直线EF折叠四边形CDFE,得到四边形GHFE,其中点C落在点G处,连接AG,AH,则AG的最小值是__.20.矩形ABCD中,AB=5,AD=3,P为CD上一点,将△ADP沿AP所在的直线折叠,得到△AEP,当B、E、P三点共线时,tan∠DAP=_______【知识点三】正方形折叠问题21.如图,小明将一张正方形纸片对折,使得AB与CD重合,折痕为EF,展开后再沿BH折叠,使得点C刚好落在折痕EF上的C′处,若CH=1cm,则BC= _____cm.22.如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为_____.23.如图,在一次综合实践活动中,小明将一张边长为的正方形纸片,沿着边上一点与点的连线折叠,点是点的对应点,延长交于点,经测量,,则的面积为______.24.如图,先将正方形纸片对折,折痕为,再把点折叠在折痕上,折痕为,点在上的对应点为,则的度数为______.三、解答题25.如果我们身旁没有量角器或三角尺,又需要作60°,30°,15°等大小的角,该怎么办呢?小西进行了以下操作研究(如图1):第1步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平.第2步:再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到了线段BN.小雅在小西研究的基础上,再次动手操作(如图2):将MN延长交BC于点G,将△BMG沿MG折叠,点B刚好落在AD边上点H处,连接GH,把纸片再次展平.请根据小西和小雅的探究,完成下列问题:①直接写出BE和BN的数量关系:  ;②根据定理:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角是30°,请求出∠ABM的度数;③求证:四边形BGHM是菱形.26.如图所示,在矩形ABCD中,AB=5,AD=8,点E,F分别是边AD,BC上的动点,且AE=CF,连接EF,将矩形ABCD沿EF折叠,使点C落在点G处,点D落在点H处,若EH与CB的延长线交于点P.(1)求证:PH=PB;(2)若∠PEA=45°,求AE的长度.27.【教材呈现】人教八年级下册数学教材第59页的部分内容.如图1,把一张矩形纸片按如图那样折一下,就可以裁出正方形纸片,为什么?(1)【问题解决】如图1,已知矩形纸片ABCD(AD>AB),将矩形纸片沿过点A的直线折叠,使点B落在边AD上,点B的对应点为F,折痕为AE,点E在BC上.求证:四边形ABEF是正方形.(请完成以下填空)证明:∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵折叠,∠AFE=∠B=90°,∴四边形ABEF是矩形(       ) ∵折叠,∴AB=(       ),∴四边形ABEF是正方形(       )(2)【问题拓展】如图2,已知平行四边形纸片ABCD(AD>AB),将平行四边形纸片沿过点A的直线折叠,使点B落在边AD上,点B的对应点为F,折痕为AE,点E在边 BC上.①求证:四边形ABEF是菱形.②连结BF,若AE=5,BF=10,求菱形ABEF的面积.28.如图,E、F分别是正方形ABCD边AB、AD的中点,将△ABF沿BF折叠,点A落在点Q处,连接FQ并延长,交DC于G点.(1)求证:CE=BF;(2)若AB=4,求GF的值.参考答案1.A【分析】将长方形纸片折叠,使A点落BC上的F处,可得到BA=BF,折痕为BE,沿EF剪下,故四边形ABFE为矩形,且有一组邻边相等,故四边形ABFE为正方形.解:∵将长方形纸片折叠,A落在BC上的F处,∴BA=BF,∵折痕为BE,沿EF剪下,∴四边形ABFE为矩形,∴四边形ABEF为正方形.故用的判定定理是;邻边相等的矩形是正方形.故选:A.【点拨】本题考查了正方形的判定定理,关键是根据邻边相等的矩形是正方形和翻折变换解答.2.D【分析】根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角形的性质求得BC的长.解:∵四边形AECF为菱形,∴∠FCO=∠ECO,EC=AE,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,,故选:D.【点拨】本题主要考查了菱形的性质以及矩形的性质,解决问题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.3.A【分析】根据菱形的性质,已知菱形的对角相等,故推出,从而得出.又因为,故,,易得解.解:根据菱形的对角相等得.,.根据折叠得.,,..故选:A.【点拨】此题要熟练运用菱形的性质得到有关角和边之间的关系.在计算的过程中,综合运用了等边对等角、三角形的内角和定理以及平行线的性质.注意:折叠的过程中,重合的边和重合的角相等.4.A【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°−(∠CDE+∠C)=180°−(45°+60°)=75°.故选:A.【点拨】本题考查了折叠问题,菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.5.D【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.解:∵四边形ABCD为矩形, ∴,∠ADC=90°,    ∠FDB=90°-∠BDC=90°-62°=28°, ∵, ∴∠CBD=∠FDB=28°, ∵矩形ABCD沿对角线BD折叠, ∴∠FBD=∠CBD=28°, ∴∠DFE=∠FBD+∠FDB=28°+28°=56°. 故选:D.【点拨】本题考查了平行线的性质,轴对称的性质,矩形的性质,三角形的外角的性质,熟练的利用轴对称的性质得到相等的角是解本题的关键.6.A【分析】首先利用勾股定理计算出BD的长,再根据折叠可得AD=A′D=5,进而得到A′B的长,再设AE=x,则A′E=x,BE=12-x,再在Rt△A′EB中利用勾股定理可得方程:(12-x)2=x2+82,解出x的值,可得答案.解:∵AB=12,BC=5,∴AD=5,∴BD==13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x,则A′E=x,BE=12-x,在Rt△A′EB中:(12-x)2=x2+82,解得:x=.故选:A.【点拨】此题主要考查了图形的翻折变换,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.C【分析】由题意可得AO=BC=10,AB=OC=8,DE=CD,BE=BC=10,在中,由勾股定理可求得,OE=4,设OD=x,则DE=CD=8-x,然后在中,由勾股定理即可求得OD=3,继而求得点D的坐标.解:∵点B的坐标为(10,8),∴AO=BC=10,AB=OC=8,由折叠的性质,可得:DE=CD,BE=BC=10,在中,由勾股定理得:,∴OE=AO-AE=10-6=4,设OD=x,则DE=CD=8-x,在中,由勾股定理得:,即:,解得:,∴OD=3,∴点D的坐标是(0,3).故选:C.【点拨】本题主要考查了矩形的性质、折叠的性质、勾股定理,熟练掌握折叠的性质是解题的关键.8.B【分析】由四边形ABCD是矩形,得∠A=∠ABC=90°,根据矩形ABCD沿EF折叠,使点B落在边AD上的点M处,点C落在点N处,得∠NME=∠ABC=90°,ME=BE,而∠DMN=30°,即知∠AME=60°,∠AEM=30°,即∠EMB+∠EBM=30°,可得∠EMB=∠EBM=15°,故∠AMB=∠AME+∠EMB=75°.解:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,∵矩形ABCD沿EF折叠,使点B落在边AD上的点M处,点C落在点N处,∴∠NME=∠ABC=90°,ME=BE,∵∠DMN=30°,∴∠AME=180°-∠NME-∠DMN=60°,∴∠AEM=90°-∠AME=30°,∴∠EMB+∠EBM=30°,∵ME=BE,∴∠EMB=∠EBM=15°,∴∠AMB=∠AME+∠EMB=75°,故选:B.【点拨】本题考查了矩形中的折叠问题,解题的关键是掌握折叠的性质:折叠前后能够重合的线段相等、能够重合的角相等.9.D【分析】先求出AF和EF的长,再根据翻折变换的知识得到EF=BF, 进而求出AB的长.解:∵四边形ABCD是正方形,∴∠A= 90°,AE= 1,∠AFE= 30°∴EF= 2,AF=,∵正方形纸片ABCD折叠,使顶点B落在边AD上的点E处,EF= BF,BF= 2,∴AB= AF+ BF=2+,故选:D.【点拨】本题主要考查了翻折变换以及正方形的性质,解题的关键是根据翻折变换得到EF=BF,此题难度不大.10.C【分析】由正方形的性质得AB=BC,∠BCD=∠B=90°,∠ECF=∠BCD=45°,由折叠的性质得∠AFE=∠B=90°,FE=BE=1,证出△CEF是等腰直角三角形,则CE=FE=,进而得出答案.解:∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∠ECF=∠BCD=45°,由折叠的性质得:∠AFE=∠B=90°,FE=BE=1,∴∠CFE=90°,∴△CEF是等腰直角三角形,∴CE=FE=,∴BC=BE+CE=1+,∴AB=BC=1+;故选:C.【点拨】本题考查了翻折变换的性质、正方形的性质、等腰直角三角形的判定与性质等知识;熟练掌握翻折变换和正方形的性质是解题的关键.11.B【分析】由原正方形的面积是 4,可求得原正方形的边长为2,由勾股定理可出新正方形边长.解:∵原正方形的面积是 4,∴原正方形的边长==2,∴由折叠可得四角是等腰直角三角形,其腰长为1,由勾股定理得:新正方形边长=,故选:B.【点拨】本题考查折叠问题,正方形的性质,勾股定理,掌握运用勾股定理是解题的关键.12.D【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点拨】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.13.75°【分析】连接,先证明为等边三角形,然后根据三线合一定理得到即可得到,则,再根据三角形内角和定理求解即可.解:连接,∵四边形为菱形,∴AD=AB,,AB∥CD,∴,∴∵,∴为等边三角形,∵为的中点,∴为的平分线,即,∴,由折叠的性质得到,在中,.故答案为:75°.【点拨】本题主要考查了菱形的性质,等边三角形的性质与判定,折叠的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.14.【分析】根据菱形的性质得到AB=BC=CD=DA,AD//BC,∠ADB=∠CBF=∠ABD,再根据折叠的性质得到∠BFC=∠BCF,由三角形内角和与外角的性质得到结果.解:∵四边形是菱形,∴AB=BC=CD=DA,AD//BC,∴∠ADB=∠CBF=∠ABD,∵是上一点,沿折叠,点恰好落在上的点处,∴BA=BF,∠A=∠BFE,∴BF=BC,∴∠BFC=∠BCF,∵,∴∠BFC=∠BCF =70°,∴∠ADB=∠CBF=40°,∵∠A=180°-2∠ADB=180°-80°=100°,故答案为:.【点拨】本题主要考查了菱形的基本性质与折叠的基本性质,根据菱形的基本性质与折叠的基本性质得到边相等是解题的关键.15.【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.解:∵四边形AECF是菱形,AB=3,∴设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,∴2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=又∵AE=AB﹣BE=3﹣1=2,则菱形的面积=AE•BC=.故答案为.【点拨】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.16.12【分析】由平行四边形的性质可得AD=BC,AB=CD=DE+CE=9,ABCD,可得∠ECD'=90°,由折叠的性质可得D'E=DE=5,AD=AD',由勾股定理可求CD'的长,AC的长.解:∵四边形ABCD是平行四边形∴AD=BC,AB=CD=DE+CE=9,ABCD∴∠BAC=∠ACD=90°∴∠ECD'=90°∵将平行四边形ABCD进行折叠,折叠后AD恰好经过点C得到AD',∴D'E=DE=5,AD=AD'∴CD'==3∴AD'=AC+3=AD=BC∵BC2=AB2+AC2,∴(AC+3)2=81+AC2,∴AC=12故答案为:12.【点拨】本题考查了翻折变换,平行四边形的性质,求出CD'的长是本题的关键.17.4+4【分析】根据折叠的性质可得,分别求出,,求出,即可得出.解:如图:过点作于点,是等腰直角三角形,,,即,,折叠,,,纸片为矩形,折叠后,,是等腰直角三角形,,,,,故答案为:.【点拨】本题考查了折叠问题,矩形的性质,等腰直角三角形,三角形的面积,勾股定理,通过折叠得出是解题的关键.18.##【分析】证明Rt△EBF≌Rt△EB′D(HL),推出BF=DB′,再证明DB′=EC=BF=1,想办法求出AB′,可得结论.解:由翻折的性质可知,EB=EB′,∠B=∠AB′E=∠EB′D=90°,在Rt△EBF和Rt△EB′D中,,∴Rt△EBF≌Rt△EB′D(HL),∴BF=DB′,∵四边形ABCD是矩形,∴∠C=∠CDB′=∠EB′D=90°,∴四边形ECDB′是矩形,∴DB′=EC=1,∴BF=EC=1,由翻折的性质可知,BF=FG=1,∠FAG=45°,∠EGF=∠B=∠AGF=90°,∴AG=FG=1,∴AF=.∴AB=AB′=1+,∴AD=AB′+DB′=2+,故答案为:2+.【点拨】本题考查翻折变换,矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.19.2【分析】如图,当A、G、E共线时,AG最小,先求出AE,根据AG=AE﹣EG即可解决问题.解:如图,依题意:点G在以点E为圆心,长为半径的圆上运动,当A、G、E共线时,AG最小, ∵四边形ABCD是矩形,∴∠B=90°,BE=EC=3,AB=4,∴AE===5.此时AG=AE﹣EG=5﹣3=2.故答案为2.【点拨】本题考查了矩形的性质,勾股定理,点到圆的距离,明确点和圆的位置关系是解决本题的关键.20.【分析】由翻折可得AD=AE,在Rt△ABE中可求出BE,设DP=EP=,表示出BP和CP,在Rt△BCP中,通过勾股定理即可列出等式,解出方程,从而求出答案.解:矩形ABCD中,AB=5,AD=3,则CD=5,BC=3,△ADP沿AP所在的直线折叠,得到△AEP,且B、E、P三点共线,∴易证△ADP≌△AEP,∴AE=AD,DP=EP,∠ADP=∠AEP=90°,在Rt△ABE中,AB=5,AE=3,∴BE=4;设DP=EP=,则BP=,CP=,在Rt△BCP中,,即,解得,∴DP=1,在Rt△ADP中,tan∠DAP=.故答案为:.【点拨】本题主要考查翻折问题,直角三角函数和勾股定理,找准线段之间的关系,并准确计算是解题的关键.21.【分析】连接CC′,证明△BCC′是等边三角形,再由折叠的性质得到∠HBC=∠HBC′=30°,利用含30度角的直角三角形的性质求解即可解决问题.解:如图,连接CC′,由折叠的性质知,折痕为EF是BC的垂直平分线,∴BC′=CC′,又由折叠的性质知,BC= BC′,∠HBC=∠HBC′,∴BC′=CC′=BC,∴△BCC′是等边三角形,∴∠C′BC=60°,∴∠HBC=∠HBC′=30°,在Rt△HBC中,∠HBC=30°,CH=1cm,∴HB=2cm,∴BC=(cm),故答案为:.【点拨】本题考查了翻折变换的性质,等边三角形的判定和性质,勾股定理,解决本题的关键是掌握翻折的性质.22.45°##45度【分析】首先根据正方形的性质可得∠1+∠2+∠3+∠4=∠ABC=90°,再根据折叠可得∠1=∠2= ∠ABD,∠3=∠4=∠DBC,进而可得∠2+∠3=45°,即∠EBF=45°.解:∵四边形ABCD是正方形,∴∠ABC=90°,根据折叠可得∠1=∠2=∠ABD,∠3=∠4=∠DBC,∵∠1+∠2+∠3+∠4=∠ABC=90°,∴∠2+∠3=45°,即∠EBF=45°,故答案为:45°.【点拨】此题主要考查了图形的翻折变换和正方形的性质,关键是找准图形翻折后,哪些角是相等的.23.##【分析】根据题意,,进而求得,勾股定理求得,即可求得的面积.解:折叠,,,,∵四边形是正方形∴中..故答案为:【点拨】本题考查了折叠的性质,勾股定理,掌握勾股定理是解题的关键.24.15°【分析】由翻折的性质AH=AB,MN垂直平分AD,于是得到DH=AH=AB=AD,故此△ADH为等边三角形,由△ADH为等边三角形可知∠HAB=30°,在△ABH中可求得∠ABH=75°,故此可求得∠HBC=15°.解:∵MN垂直平分AD,∴DH=AH.由翻折的性质可知:AH=AB.∵正方形ABCD中,∴AH=AD=DH.∴△ADH是一个等边三角形.∴∠DAH=60°.∴∠HAB=30°.∵AB=AH,∴∠ABH=×(180°−30°)=75°.∴∠HBC=∠ABC−∠ABH=90°−75°=15°.故答案是:15°.【点拨】本题主要考查的是翻折的性质、线段垂直平分线的性质、等边三角形的性质和判定、等腰三角形的性质,正方形的性质,证得△ADH是一个等边三角形是解题的关键.25.①BE=BN;②∠ABM=30°;③见分析.【分析】(1)根据折叠的性质可得BE= AB,从而得到BE= BN,即可求解;(2)根据在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角是30°,可得∠BNE=30°,即可求解;(3)由②得∠ABM=30°,从而得到△BMG是等边三角形,进而得到BM=BG,再有折叠的性质,即可求证.解:①解:∵对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,∴BE= AB,∵再次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到了线段BN.∴AB=BN,∴BE= BN;②解:∵由折叠的性质得:∠BEN=∠AEN=90°,∵BE=BN,∴∠BNE=30°,∴∠ABN=60°,由折叠的性质得:∠ABM=∠ABN=30°;③证明:由②得∠ABM=30°,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,∴∠AMB=∠BMN=60°,∠MBG=60°,∴△BMG是等边三角形,∴BM=BG,由折叠得BM=MH,BG=GH,∴BM=MH=BG=GH,∴四边形BGHM是菱形.【点拨】本题主要考查了图形的变换——折叠,矩形的性质,菱形的判定等,熟练掌握图形折叠前后对应边相等,对应角相等是解题的关键.26.(1)见分析(2)AE的长度为.【分析】(1)根据∠PEF=∠PFE,证明PE=PF,再根据折叠的性质ED=EH,DE=BF,进一步计算即可证明PH=PB;(2)先证明△AEQ和△BPQ都是等腰直角三角形,设AE=CF=x,则EQ=x,PQ=(5-x) ,利用PE=PF代出方程求解即可.解:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠PFE,由翻折变换可知,∠DEF=∠PEF,∴∠PEF=∠PFE,∴PE=PF;∵AD=BC,AE=FC,∴ED=BF.由折叠性质得ED=EH,∴BF=EH,∴PE-EH=PF-BF,∴PH=PB;(2)解:设PE交AB于点Q,设AE=CF=x,则DE=BF=8-x,∵∠PEA=45°,∠A=∠ABC=∠ABP=90°,∴∠AEQ=∠AQE=∠PBQ=∠QPB=45°,∴△AEQ和△BPQ都是等腰直角三角形,∴BQ=PB=5-x,由勾股定理得:EQ=x,PQ=(5-x) ,∵PE=PF,∴PQ+EQ=PB+BF,即(5-x)+x=5-x+8-x,解得:x=.∴AE的长度为.【点拨】本题考查了翻折变换,等腰直角三角形的判定和性质,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.27.(1)有三个角是直角的四边形是矩形;AF;一组邻边相等的矩形是正方形.(2)①证明见详解;②菱形ABEF的面积为25【分析】(1)由矩形的性质得∠BAD=∠B=90°,再由折叠的性质得:∠AFE=∠B=90°,AB=AF,则四边形ABEF是矩形,然后由AB=AF,即可得出结论;(2)①由平行四边形的性质得AD∥BC,则∠FAE=∠BEA,再证AB=BE,则AF=BE,得四边形ABEF是平行四边形,然后由AF=AB即可得出结论;②由菱形面积公式得S菱形ABEF=AE•BF,即可得出答案.(1)解:∵四边形ABCD是矩形,∴∠BAD=∠B=90°,由折叠的性质得:∠AFE=∠B=90°,∴四边形ABEF是矩形 (有三个角是直角的四边形为矩形),由折叠的性质得:AB=AF,∴四边形ABEF是正方形(有一组邻边相等的矩形是正方形),故答案为:有三个角是直角的四边形为矩形;AF;有一组邻边相等的矩形是正方形;(2)①证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得:AF=AB,∠BAE=∠FAE,∴∠BEA=∠BAE,∴AB=BE,∴AF=BE,∴四边形ABEF是平行四边形,又∵AF=AB,∴平行四边形ABEF是菱形;②解:如图,∵四边形ABEF是菱形,AE=5,BF=10,∴S菱形ABEF=AE•BF=×5×10=25,故菱形ABEF的面积为25.【点拨】本题是四边形综合题目,考查了矩形的判定与性质、正方形的判定、菱形的判定与性质、平行四边形的判定与性质、等腰三角形的判定、折叠的性质、平行线的性质等知识,本题综合性强,熟练掌握折叠的性质、矩形的判定与性质是解题的关键.28.(1)见分析(2)GF的值为.【分析】(1)先判断出AF=BE,进而得出△FAB≌△EBC(SAS),即可得出结论;(2)连接BG,根据HL证明Rt△BQG≌Rt△BCG,得QG=GC,设QG=b,在Rt△DFG中,根据勾股定理列方程可得b,从而可得结论.解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠A=∠ABC=90°,∵E、F分别是正方形ABCD边AB、AD的中点,∵AF=BE,∴△FAB≌△EBC(SAS),∴CE=BF;(2)解:如图,连接BG,由折叠得:AB=BQ,∠BQF=∠A=90°,∵AB=BC,∴BC=BQ,∵BG=BG,∴Rt△BQG≌Rt△BCG(HL),∴QG=GC,∵AB=4,F是正方形ABCD边AD的中点,设QG=b,则DF=AF=FQ=2,FG=2+b,DG=4-b,在Rt△DFG中,∵DF2+DG2=FG2,∴,∴b=,即QG=,∴GF=FQ+QG=2+=.∴GF的值为.【点拨】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理等知识,正确作辅助线是本题的关键.

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map