所属成套资源:【备考2025高考】高考二轮复习物理模型与方法热点题型归类(含答案解析)
专题10 天体运动-2025高考物理模型与方法热点题型归类训练
展开
这是一份专题10 天体运动-2025高考物理模型与方法热点题型归类训练,文件包含专题10天体运动原卷版docx、专题10天体运动解析版docx等2份试卷配套教学资源,其中试卷共126页, 欢迎下载使用。
TOC \ "1-3" \h \u \l "_Tc11502" 题型一 开普勒定律的应用 PAGEREF _Tc11502 \h 1
\l "_Tc497" 题型二 万有引力定律的理解 PAGEREF _Tc497 \h 6
\l "_Tc909" 类型1 万有引力定律的理解和简单计算 PAGEREF _Tc909 \h 6
\l "_Tc5306" 类型2 不同天体表面引力的比较与计算 PAGEREF _Tc5306 \h 8
\l "_Tc5988" 类型3 重力和万有引力的关系 PAGEREF _Tc5988 \h 8
\l "_Tc17479" 类型4 地球表面与地表下某处重力加速度的比较与计算 PAGEREF _Tc17479 \h 12
\l "_Tc22695" 题型三 天体质量和密度的计算 PAGEREF _Tc22695 \h 16
\l "_Tc23904" 类型1 利用“重力加速度法”计算天体质量和密度 PAGEREF _Tc23904 \h 17
\l "_Tc4316" 类型2 利用“环绕法”计算天体质量和密度 PAGEREF _Tc4316 \h 20
\l "_Tc23520" 类型3 利用椭圆轨道求质量与密度 PAGEREF _Tc23520 \h 25
\l "_Tc2844" 题型四 卫星运行参量的分析 PAGEREF _Tc2844 \h 28
\l "_Tc19075" 类型1 卫星运行参量与轨道半径的关系 PAGEREF _Tc19075 \h 28
\l "_Tc27433" 类型2 同步卫星、近地卫星及赤道上物体的比较 PAGEREF _Tc27433 \h 33
\l "_Tc23057" 类型3 宇宙速度 PAGEREF _Tc23057 \h 38
\l "_Tc4732" 题型五 卫星的变轨和对接问题 PAGEREF _Tc4732 \h 41
\l "_Tc12999" 类型1 卫星变轨问题中各物理量的比较 PAGEREF _Tc12999 \h 42
\l "_Tc10868" 类型2 卫星的对接问题 PAGEREF _Tc10868 \h 44
\l "_Tc23092" 题型六 天体的“追及”问题 PAGEREF _Tc23092 \h 47
\l "_Tc25932" 题型七 星球稳定自转的临界问题 PAGEREF _Tc25932 \h 52
\l "_Tc6378" 题型八 双星或多星模型 PAGEREF _Tc6378 \h 55
\l "_Tc21388" 类型1 双星问题 PAGEREF _Tc21388 \h 56
\l "_Tc26280" 类型2 三星问题 PAGEREF _Tc26280 \h 59
\l "_Tc23037" 类型4 四星问题 PAGEREF _Tc23037 \h 64
题型一 开普勒定律的应用
【解题指导】1.行星绕太阳运动的轨道通常按圆轨道处理.
2.由开普勒第二定律可得eq \f(1,2)Δl1r1=eq \f(1,2)Δl2r2,eq \f(1,2)v1·Δt·r1=eq \f(1,2)v2·Δt·r2,解得eq \f(v1,v2)=eq \f(r2,r1),即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.
3.开普勒第三定律eq \f(a3,T2)=k中,k值只与中心天体的质量有关,不同的中心天体k值不同,且该定律只能用在同一中心天体的两星体之间.
【例1】(2024·浙江·高考真题)与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R,小行星甲的远日点到太阳的距离为R1,小行星乙的近日点到太阳的距离为R2,则( )
A.小行星甲在远日点的速度大于近日点的速度
B.小行星乙在远日点的加速度小于地球公转加速度
C.小行星甲与乙的运行周期之比
D.甲乙两星从远日点到近日点的时间之比=
【变式演练1】(2024·山东·高考真题)“鹊桥二号”中继星环绕月球运行,其24小时椭圆轨道的半长轴为a。已知地球同步卫星的轨道半径为r,则月球与地球质量之比可表示为( )
A.B.C.D.
【变式演练2】.(2024·安徽·高考真题)2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空。当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51900km。后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900km,周期约为24h。则鹊桥二号在捕获轨道运行时( )
A.周期约为144h
B.近月点的速度大于远月点的速度
C.近月点的速度小于在冻结轨道运行时近月点的速度
D.近月点的加速度大于在冻结轨道运行时近月点的加速度
【变式演练3】.北京时间2024年1月5日19时20分,我国在酒泉卫星发射中心用快舟一号甲运载火箭,成功将天目一号气象星座15-18星(以下简称天目星)发射升空,天目星顺利进入预定轨道,至此天目一号气象星座阶段组网完毕。天目星的发射变轨过程可简化为如图所示,先将天目星发射到距地面高度为h1的圆形轨道I上,在天目星经过A点时点火实施变轨进入椭圆轨道II,最后在椭圆轨道的远地点B点再次点火将天目星送入距地面高度为h2的圆形轨道III上,设地球半径为R,地球表面重力加速度为g,则天目星沿椭圆轨道从A点运动到B点的时间为( )
A.B.
C.D.
【变式演练4】地球同步卫星的发射过程可以简化如下:卫星先在近地圆形轨道I上运动,在点A时点火变轨进入椭圆轨道Ⅱ,到达轨道的远地点B时,再次点火进入同步轨道Ⅲ绕地球做匀速圆周运动。已知地球半径为R,同步卫星轨道半径为r,设卫星质量保持不变,下列说法中不正确的是( )
A.卫星在轨道Ⅰ上和轨道Ⅲ上的运动周期之比为
B.卫星在轨道Ⅰ上和轨道Ⅱ上的运动周期之比为
C.卫星在轨道Ⅰ上和轨道Ⅲ上运动的动能之比
D.卫星在轨道Ⅱ上运动经过A点和B点的速度之比为
题型二 万有引力定律的理解
【解题指导】1.万有引力与重力的关系
地球对物体的万有引力F表现为两个效果:一是重力mg,二是提供物体随地球自转的向心力F向。
(1)在赤道上:Geq \f(m地m,R2)=mg1+mω2R。
(2)在两极上:Geq \f(m地m,R2)=mg0。
(3)在一般位置:万有引力Geq \f(m地m,R2)等于重力mg与向心力F向的矢量和。
越靠近南、北两极,g值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即eq \f(Gm地m,R2)=mg。
2.星球上空的重力加速度g′
星球上空距离星体中心r=R+h处的重力加速度g′,mg′=eq \f(Gm地m,(R+h)2),得g′=eq \f(Gm地,(R+h)2),所以eq \f(g,g′)=eq \f((R+h)2,R2)。
类型1 万有引力定律的理解和简单计算
【例1(2023·全国·高三专题练习)有质量的物体周围存在着引力场。万有引力和库仑力有类似的规律,因此我们可以用定义静电场场强的方法来定义引力场的场强。由此可得,质量为m的质点在质量为M的物体处(二者间距为r)的引力场场强的表达式为(引力常量用G表示)( )
A.GB.GC.GD.G
【变式演练】(多选)在万有引力定律建立的过程中,“月—地检验”证明了维持月球绕地球运动的力与地球对苹果的力是同一种力。完成“月—地检验”需要知道的物理量有( )
A.月球和地球的质量
B.引力常量G和月球公转周期
C. 地球半径和“月—地”中心距离
D.月球公转周期和地球表面重力加速度g
类型2 不同天体表面引力的比较与计算
【例2】从“玉兔”登月到“祝融”探火,我国星际探测事业实现了由地月系到行星际的跨越。已知火星质量约为月球的9倍,半径约为月球的2倍,“祝融”火星车的质量约为“玉兔”月球车的2倍。在着陆前,“祝融”和“玉兔”都会经历一个由着陆平台支撑的悬停过程。悬停时,“祝融”与“玉兔”所受着陆平台的作用力大小之比为( )
A.9∶1 B.9∶2
C.36∶1 D.72∶1
【变式演练】火星的质量约为地球质量的eq \f(1,10),半径约为地球半径的eq \f(1,2),则同一物体在火星表面与在地球表面受到的引力的比值约为( )
A.0.2 B.0.4
C.2.0 D.2.5
类型3 重力和万有引力的关系
【例1】由于地球自转的影响,地球表面的重力加速度会随纬度的变化而有所不同.已知地球表面两极处的重力加速度大小为,在赤道处的重力加速度大小为g,地球自转的周期为T,引力常量为G。假设地球可视为质量均匀分布的球体。下列说法正确的是( )
A.质量为m的物体在地球北极受到的重力大小为mg
B.质量为m的物体在地球赤道上受到的万有引力大小为mg
C.地球的半径为
D.地球的密度为
【变式演练1】在地球表面,被轻质细线悬挂而处于静止状态的质量为m的小球,所受地球的万有引力作用效果分解示意图如图所示,已知小球所处的纬度为θ(),重力为F1,万有引力为F,地球的半径为R,自转周期为T,下列说法正确的是( )
A.细线的拉力FT与F是一对平衡力B.地球的第一宇宙速度为
C.小球所需的向心力为D.地球赤道处的重力加速度为
【变式演练2】2023年11月16日,中国北斗系统正式加入国际民航组织标准,成为全球民航通用的卫星导航系统。北斗系统空间段由若干地球静止轨道卫星、倾斜地球同步轨道卫星和中圆地球轨道卫星等组成。将地球看成质量均匀的球体,若地球半径与同步卫星的轨道半径之比为,下列说法正确的是( )
A.倾斜地球同步轨道卫星有可能保持在长沙的正上方
B.地球静止轨道卫星与地面上的点线速度大小相等所以看起来是静止的
C.地球赤道重力加速度大小与北极的重力加速度大小之比为
D.地球赤道重力加速度大小与北极的重力加速度大小之比为
类型4 地球表面与地表下某处重力加速度的比较与计算
【例41】已知质量分布均匀的球壳对内部物体产生的万有引力为0。对于某质量分布均匀的星球,在距离星球表面不同高度或不同深度处重力加速度大小是不同的,若用x表示某位置到该星球球心的距离,用g表示该位置处的重力加速度大小,忽略星球自转,下列关于g与x的关系图像可能正确的是( )
A.B.
C.D.
【变式演练1】若地球是质量均匀分布的球体,其质量为M0,半径为R。忽略地球自转,重力加速度g随物体到地心的距离r变化如图所示。g-r曲线下O-R部分的面积等于R-2R部分的面积。
(1)用题目中的已知量表示图中的g0;
(2)已知质量分布均匀的空心球壳对内部任意位置的物体的引力为0。请你证明:在地球内部,重力加速度与r成正比;
(3)若将物体从2R处自由释放,不考虑其它星球引力的影响,不计空气阻力,借助本题图像,求这个物体到达地表时的速率。
【变式演练2】上世纪70年代,前苏联在科拉半岛与挪威的交界处进行了人类有史以来最大规模的地底挖掘计划。当苏联人向地心挖掘深度为d时,井底一个质量为m的小球与地球之间的万有引力为F,已知质量分布均匀的球壳对壳内物体的引力为零,质量分布均匀的地球的半径为R,质量为M,万有引力常量为G,则F大小等于( )
A.B.C.D.
【变式演练3】2020年12月1日嫦娥五号探测器实施月面“挖土”成功,“挖土”采用了钻取和表取两种模式。假设月球可看作质量分布均匀的球体,其质量为M,半径为R。已知质量分布均匀的球壳对壳内物体的万有引力为零,万有引力常量为G。某次钻取中质量为m的钻尖进入月球表面以下h深处,则此时月球对钻尖的万有引力为( )
A.0B.C.D.
【变式演练4】地质勘探发现某地区表面的重力加速度发生了较大的变化,怀疑地下有空腔区域,进一步探测发现在地面P点的正下方有一球形空腔区域储藏有天然气,如图所示,假设该地区岩石均匀分布且密度为ρ,天然气的密度远小于ρ,可忽略不计,如果没有该空腔,地球表面正常的重力加速度大小为g;由于空腔的存在,现测得P点处的重力加速度大小为kg(k<1),已知引力常量为G,球形空腔的球心深度为d,则此球形空腔的体积是( )
A.B.C.D.
题型三 天体质量和密度的计算
类型1 利用“重力加速度法”计算天体质量和密度
【例1】中国计划在2030年前登上月球,假设宇宙飞船落到月面前绕月球表面附近做角速度为ω的匀速圆周运动。宇航员登上月球后,做了一次斜上抛运动的实验,如图所示,在月面上,小球从A点斜向上抛出,经过最高点B运动到C点,已知小球在A、C两点的速度与水平方向的夹角分别为37°、53°,小球在B点的速度大小为v,小球从A点到C点的运动时间为t,引力常量为G,sin37°=0.6,cs37°=0.8,月球可视为均匀球体,忽略月球的自转,下列说法正确的是( )
A.月球的密度为B.月球表面的重力加速度大小为
C.月球的第一宇宙速度大小为D.月球的半径为
【变式演练1】宇航员登上某半径为R的球形未知天体,在该天体表面将一质量为m的小球以初速度竖直上抛,上升的最大高度为h,万有引力常量为G。则( )
A.该星球表面重力加速度为
B.该星球质量为
C.该星球的近地面环绕卫星运行周期为
D.小球到达最大高度所需时间
【变式演练2】一宇航员到达半径为R、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一质量为m的小球,上端固定在O点,如图甲所示,在最低点给小球某一初速度,使其绕O点在竖直面内做半径为r的圆周运动,测得绳的拉力F大小随时间t的变化规律如图乙所示.设R、m、r、引力常量G以及F1和F2为已知量,忽略各种阻力.以下说法正确的是( )
A.该星球表面的重力加速度为
B.小球在最高点的最小速度为
C.该星球的密度为
D.卫星绕该星球的第一宇宙速度为
【变式演练3】2023年4月24日,中国首次火星探测火星全球影像图在第八个中国航天日发布。其中,国际天文学联合会还将天问一号着陆点附近的22个地理实体以中国历史文化名村名镇命名,将中国标识永久刻印在火星上。火星半径为,火星表面处重力加速度为。火星和地球的半径之比约为,表面重力加速度之比约为,忽略火星、地球自转,则地球和火星的密度之比约为( )
A.B.C.D.
【变式演练4】我国计划在2030年前实现载人登陆月球开展科学探索,其后将探索建造月球科研试验站,开展系统、连续的月球探测和相关技术试验验证。若航天员在月球表面附近高h处以初速度水平抛出一个小球,测出小球运动的水平位移大小为L。若月球可视为均匀的天体球,已知月球半径为R,引力常量为G,则下列说法正确的是( )
A.月球表面的重力加速度B.月球的质量
C.月球的第一宇宙速度D.月球的平均密度
类型2 利用“环绕法”计算天体质量和密度
【例2】(2024·山西太原·三模)宇宙中行星的半径,各自相应卫星环绕行星做匀速圆周运动,卫星轨道半径与周期的关系如图所示,若不考虑其它星体对的影响及之间的作用力,下列说法正确的是( )
A.行星的质量之比为B.行星的密度之比为
C.行星的第一宇宙速度之比为D.行星的同步卫星的向心加速度之比为
【变式演练1】.(2024·云南昆明·模拟预测)在太阳系之外,科学家发现了一颗最适宜人类居住的类地行星,绕恒星橙矮星运行,命名为“开普勒438b”。其运行的周期为地球运行周期的p倍,轨道半径为日地距离的q倍。假设该行星绕星的运动与地球绕太阳的运动均可看做匀速圆周运动,则橙矮星与太阳的质量之比为( )
A.B.C.D.
【变式演练2】.(2024·山西·模拟预测)P、Q是太阳系中的两个行星,P的半径是Q的2倍。在登陆两行星后,分别在行星表面以速度v竖直上抛小球,小球返回到抛出点的时间为t;改变抛出时的初速度,画出v与t的函数图像如图所示。将两行星视为均匀球体,忽略大气阻力和行星自转,下列判断正确的是( )
A.行星P和Q表面的重力加速度之比为4:1
B.行星P和Q的第一宇宙速度之比为4:1
C.行星P的质量是Q质量的4倍
D.行星P的密度与Q的密度相等
【变式演练3】2024年1月11日,太原卫星发射中心将云遥一号卫星送入预定轨道,飞行试验任务取得圆满成功。已知“云遥一号”在轨道做匀速圆周运动,运行周期为T,地球的半径为R,地球表面的重力加速度为g,引力常量为G,忽略地球自转的影响,下列说法正确的是( )
A.地球的质量为
B.“云遥一号”的轨道半径为
C.“云遥一号”的线速度可能大于
D.“云遥一号”的加速度可能大于g
【变式演练4】(2024·吉林长春·模拟预测)按黑体辐射理论,黑体单位面积的辐射功率与其热力学温度的四次方成正比,比例系数为(称为斯特藩-玻尔兹曼常数),某黑体如果它辐射的功率与接收的功率相等时,温度恒定。假设宇宙中有一恒星A和绕其圆周运动的行星B(忽略其它星体的影响),已知恒星A单位面积辐射的功率为P,B绕A圆周运动的周期为,将B视为黑体,B的温度恒定为T,万有引力常数为G,将A和B视为质量均匀分布的球体,行星B的大小远小于其与A的距离,.由上述物理量和常数表示出的恒星A的平均密度为( )
A.B.
C.D.
类型3 利用椭圆轨道求质量与密度
【例1】(2024·安徽·一模)如图所示,有两颗卫星绕某星球做椭圆轨道运动,两颗卫星的近地点均与星球表面很近(可视为相切),卫星1和卫星2的轨道远地点到星球表面的最近距离分别为,卫星1和卫星2的环绕周期之比为k。忽略星球自转的影响,已知引力常量为G,星球表面的重力加速度为。则星球的平均密度为( )
A.B.
C.D.
【变式演练1】科学家对银河系中心附近的恒星S2进行了多年的持续观测,给出1994年到2002年间S2的位置如图所示。科学家认为S2的运动轨迹是半长轴约为1 000 AU(太阳到地球的距离为1 AU)的椭圆,银河系中心可能存在超大质量黑洞。这项研究工作获得了2020年诺贝尔物理学奖。若认为S2所受的作用力主要为该大质量黑洞的引力,设太阳的质量为M,可以推测出该黑洞质量约为( )
A.4×104M B.4×106M
C.4×108M D.4×1010M
【变式演练2】为了对火星及其周围的空间环境进行探测,我国于2021年发射“天问一号”火星探测器。假设“天问一号”被火星引力捕捉后先在离火星表面高度为h的圆轨道上运动,运行周期分别为;制动后在近火的圆轨道上运动,运行周期为,火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G。仅利用以上数据,下列说法正确的是( )
A.可以求得“天问一号”火星探测器的密度为
B.可以求得“天问一号”火星探测器的密度为
C.可以求得火星的密度为
D.由于没有火星的质量和半径,所以无法求得火星的密度
题型四 卫星运行参量的分析
类型1 卫星运行参量与轨道半径的关系
1.天体(卫星)运行问题分析
将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供.
2.物理量随轨道半径变化的规律
Geq \f(Mm,r2)=eq \b\lc\{\rc\ (\a\vs4\al\c1(ma→a=\f(GM,r2)→a∝\f(1,r2),m\f(v2,r)→v=\r(\f(GM,r))→v∝\f(1,\r(r)),mω2r→ω=\r(\f(GM,r3))→ω∝\f(1,\r(r3)),m\f(4π2,T2)r→T=\r(\f(4π2r3,GM))→T∝\r(r3)))
即r越大,v、ω、a越小,T越大.(越高越慢)
3.公式中r指轨道半径,是卫星到中心天体球心的距离,R通常指中心天体的半径,有r=R+h.
4.同一中心天体,各行星v、ω、a、T等物理量只与r有关;不同中心天体,各行星v、ω、a、T等物理量与中心天体质量M和r有关.
【例1】(2024·北京·二模)研究表明,2000年来地球自转周期累计慢了2个多小时。假设这种趋势持续下去,地球其他条件不变,未来人类发射的地球同步卫星与现在相比( )。
A.距地面的高度变小B.向心加速度变大
C.线速度变小D.角速度变大
【变式演练1】(多选)2024年4月15日12时12分,我国在酒泉卫星发射中心成功将四维高景三号01星发射升空。若该星的质量为m,在离地面高度为的近地轨道(远小于地球同步轨道)上绕地球做圆周运动。已知地球半径为R,地球表面的重力加速度为g,地球自转的周期为T。则该星在轨运行过程中,下列说法正确的是( )
A.周期小于TB.向心加速度为
C.速率可能大于D.动能为
【变式演练2】.(多选)可近似认为太阳系中各行星在同一平面内沿同一方向绕太阳做圆周运动。当地球恰好运行到另一行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”。若地球及其他行星绕太阳运动的轨道半径如下表,则下列说法正确的是( )
A.火星的运行速率小于地球的运行速率
B.木星绕太阳运行的周期比地球绕太阳运行的周期小
C.土星的向心加速度比天王星的向心加速度小
D.上表中的行星中,海王星相邻两次冲日的时间间隔最短
【变式演练3】.(多选)北京时间2023年7月20日21时40分,经过约8小时的出舱活动,神舟十六号航天员密切协同,在空间站机械臂支持下,圆满完成出舱活动全部既定任务,出舱活动取得圆满成功。已知地球半径为R,空间站绕地球做圆周运动的轨道半径为kR,地球自转周期为,地球同步卫星轨道半径为nR,则( )
A.空间站的运行周期为B.空间站的向心加速度大小为
C.空间站的线速度大小为D.地球表面处的重力加速度为
类型2 同步卫星、近地卫星及赤道上物体的比较
如图所示,a为近地卫星,轨道半径为r1;b为地球同步卫星,轨道半径为r2;c为赤道上随地球自转的物体,轨道半径为r3.
【例1】某国产手机新品上市,持有该手机者即使在没有地面信号的情况下,也可以拨打、接听卫星电话。为用户提供语音、数据等卫屋通信服务的“幕后功臣”正是中国自主研制的“天通一号”卫星系统,该系统由“天通一号”01星、02星、03星三颗地球同步卫星组成。已知地球的自转周期为T,地球的半径为R,该系统中的卫星距离地面的高度为h,电磁波在真空中的传播速度为c,引力常量为G。下列说法正确的是( )
A.可求出地球的质量为
B.“天通一号”01星的向心加速度小于静止在赤道上的物体的向心加速度
C.“天通一号”01星若受到阻力的影响,运行轨道会逐渐降低,速度会变大
D.该手机向此卫星系统发射信号后,至少需要经过时间才接收到信号
【变式演练1】如图所示,a为放在赤道上相对地球静止的物体,随地球自转做匀速圆周运动,b为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c为地球的同步卫星。下列关于a、b、c的说法中正确的是( )
A.b卫星转动线速度大于
B.a、b、c做匀速圆周运动的向心加速度大小关系为
C.a、b、c做匀速圆周运动的周期关系为
D.在b、c中,c的机械能大
【变式演练2】龙年首发,“长征5号”遥七运载火箭搭载通信技术试验卫星十一号发射成功,卫星进入地球同步轨道后,主要用于开展多频段、高速率卫星通信技术验证。下列说法正确的是( )
A.同步卫星的加速度大于地球表面的重力加速度
B.同步卫星的运行速度小于7.9km/s
C.所有同步卫星都必须在赤道平面内运行
D.卫星在同步轨道运行过程中受到的万有引力不变
【变式演练3】根据地球同步卫星,科学家提出了“太空天梯”的设想。“太空天梯”的主体结构为一根巨大的硬质绝缘杆,一端固定在地球赤道,另一端穿过地球同步卫星,且绝缘杆的延长线通过地心。若三个货物分别固定在“太空天梯”的a、b、c三个位置,三个货物与同步卫星一起以地球自转角速度绕地球做匀速圆周运动,以地心为参考系,下列说法正确的是( )
A.三个货物速度大小关系为
B.如果三个货物在a、b、c三个位置从杆上同时脱落,三个货物都将做离心运动
C.杆对b处货物的作用力沿Ob方向向上,杆对c处货物的作用力沿cO方向向下
D.若有一个轨道高度与b相同的人造卫星绕地球做匀速圆周运动,则其环绕地球的角速度小于位于b处货物的角速度
类型3 宇宙速度
1.第一宇宙速度的推导
方法一:由Geq \f(Mm,R2)=meq \f(v12,R),得v1=eq \r(\f(GM,R))=eq \r(\f(6.67×10-11×5.98×1024,6.4×106)) m/s≈7.9×103 m/s.
方法二:由mg=meq \f(v12,R)得
v1=eq \r(gR)=eq \r(9.8×6.4×106) m/s≈7.9×103 m/s.
第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,Tmin=2πeq \r(\f(R,g))=2πeq \r(\f(6.4×106,9.8)) s≈5 075 s≈85 min.
2.宇宙速度与运动轨迹的关系
(1)v发=7.9 km/s时,卫星绕地球表面做匀速圆周运动.
(2)7.9 km/svB,又因v1>v3,故有vA>v1>v3>vB.
(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A点,卫星的加速度都相同,同理,卫星在轨道Ⅱ或轨道Ⅲ上经过B点的加速度也相同.
(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律eq \f(r3,T2)=k可知T1v3
向心加速度
a1>a2>a3
相关试卷
这是一份专题32 近代物理初步-2025高考物理模型与方法热点题型归类训练,文件包含专题32近代物理初步原卷版docx、专题32近代物理初步解析版docx等2份试卷配套教学资源,其中试卷共108页, 欢迎下载使用。
这是一份专题31 光学-2025高考物理模型与方法热点题型归类训练,文件包含专题31光学原卷版docx、专题31光学解析版docx等2份试卷配套教学资源,其中试卷共99页, 欢迎下载使用。
这是一份专题23 电路及其应用-2025高考物理模型与方法热点题型归类训练,文件包含专题23电路及其应用原卷版docx、专题23电路及其应用解析版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。