所属成套资源:浙教版数学七年级上册 分类专项训练+单元提升(2份,原卷版+解析版)
浙教版数学七年级上学期期末【夯实基础100题专练】(解析版)
展开
这是一份浙教版数学七年级上学期期末【夯实基础100题专练】(解析版),文件包含浙教版数学七年级上学期期末夯实基础100题专练原卷版doc、浙教版数学七年级上学期期末夯实基础100题专练解析版doc等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
1.(2022·浙江杭州·七年级期末)2021的绝对值是( )
A.2021B.2021C.D.
2.(2022·浙江丽水·七年级期末)在-5,0,-2,4这四个数中,最小的数是( )
A.-2B.0C.-5D.4
3.(2022·浙江杭州·七年级期末)下列选项正确的是( )
A.B.C.D.
4.(2022·浙江金华·七年级期末)3的相反数为( )
A.﹣3B.﹣C.D.3
5.(2022·浙江丽水·七年级期末)的意义是( )
A.2×3B.2+3C.2+2+2D.2×2×2
6.(2022·浙江金华·七年级期末)吋是电视机常用规格之一,1吋约为拇指上面一节的长(如图所示),则6吋长相当于( )
A.数学书的宽度B.课桌的宽度C.黑板的宽度D.粉笔的长度
7.(2022·浙江舟山·七年级期末)我国第七次人口普查显示,全国总人口约为1411000000人,将这个总人口数用科学记数法表示为( )
A.14.11×107B.1.411×108C.1.411×109D.0.1411×1010
8.(2022·浙江绍兴·七年级期末)把34.75精确到个位得到的近似数是( )
A.30B.34.8C.34D.35
9.(2022·浙江湖州·七年级期末)如图是湖州市某日的天气预报,该天最高气温比最低气温高( )
A.7℃B.﹣70℃C.3℃D.﹣3℃
10.(2022·浙江绍兴·七年级期末)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )
A.B.
C.D.
11.(2022·浙江温州·七年级期末)计算的结果等于( )
A.B.C.D.
12.(2022·浙江台州·七年级期末)下列各数中,无理数是( )
A.B.C.D.
13.(2022·浙江杭州·七年级期末)正方形面积为10,其边长是x,以下说法正确的是( )
A.x是有理数B.2<x<3
C.3<x<4D.在数轴上找不到表示实数x的点
14.(2022·浙江宁波·七年级期末)在实数 (每两个1之间多一个0 )中,无理数的个数有( )
A.2 个B.3 个C.4 个D.5 个
15.(2022·浙江金华·七年级期末)关于“”的三种说法:①表示16的平方根;②;③是无理数.其中正确的个数是( )
A.0个B.1个C.2个D.3个
16.(2022·浙江杭州·七年级期末)若,是-1与 1(包括-1和 1)之间的有理数,满足且,则( )
A.一定是正数B.一定是整数C.一定是有理数D.可以是无理数
17.(2022·浙江绍兴·七年级期末)下列等式成立的是( )
A.B.C.D.
18.(2022·浙江温州·七年级期末)有一个数值转换器,原理如下:
当输入81时,输出( )
A.9B.3C.D.3
19.(2022·浙江宁波·七年级期末)已知整数满足,则整数可能是( )
A.2B.3C.4D.5
20.(2022·浙江绍兴·七年级期末)下列说法中不正确的是( )
A.10的平方根是B.8是64的一个平方根
C.的立方根是D.的平方根是
21.(2022·浙江金华·七年级期末)数在下列哪两个连续整数之间( )
A.4和5B.5和6C.6和7D.7和8
22.(2022·浙江绍兴·七年级期末)16的算术平方根是( ).
A.2B.-2C.±4D.4
23.(2022·浙江金华·七年级期末)下列各式中,正确的是( )
A.B.C.D.
24.(2022·浙江金华·七年级期末)如果单项式和是同类项,则和的值是( )
A.2,1B.,1C.,2D.1,2
25.(2022·浙江台州·七年级期末)原价为a元的衣服打折后以(0.6a-30)元出售,下列说法中,能正确表示该衣服售价的是()
A.原价减30元后再打6折B.原价打6折后再减30元
C.原价打4折后再减30元D.原价减30元后再打4折
26.(2022·浙江丽水·七年级期末)若,则代数式的值是( )
A.10B.8C.6D.4
27.(2022·浙江台州·七年级期末)下列选项中的量不能用“”表示的是( )
A.边长为,且这条边上的高为0.9的三角形的面积
B.原价为元/千克的商品打九折后的售价
C.以0.9千米/小时的速度匀速行驶小时所经过的路程
D.一本书共页,看了整本书的后剩下的页数
28.(2022·浙江台州·七年级期末)计算的结果是( )
A.1B.2C.D.
29.(2022·浙江衢州·七年级期末)下列各组单项式中,能合并同类项的一组是( )
A.3xy和﹣B.3a和3C.x2y和2xy2D.2a和3b
30.(2022·浙江宁波·七年级期末)下列计算正确的是( )
A.B.C.D.
31.(2022·浙江杭州·七年级期末)下列各组中的两项是同类项的是( )
A.2a与2abB.3xy与﹣yxC.2a2b与2ab2D.x2y与﹣1
32.(2022·浙江金华·七年级期末)以下代数式中,不属于整式的是( )
A.mB.C.D.2
33.(2022·浙江丽水·七年级期末)去括号等于( )
A.B.C.D.
34.(2022·浙江台州·七年级期末)某校男生人数占学生总数的,女生的人数是,学生的总数是( )
A.B.C.D.
35.(2022·浙江宁波·七年级期末)下列计算正确的是( )
A.B.
C.D.
36.(2022·浙江杭州·七年级期末)已知,当时,的值是2022;当时,的值是( )
A.-2022B.-2018C.2018D.2022
37.(2022·浙江绍兴·七年级期末)代数式,,,20%•x,,ab,中,多项式有( )个
A.0B.1C.2D.3
38.(2022·浙江湖州·七年级期末)单项式﹣12x3y的系数和次数分别是( )
A.﹣12,4B.﹣12,3C.12,3D.12,4
39.(2022·浙江湖州·七年级期末)已知a+2b=4,则代数式﹣2a﹣4b﹣1的值是( )
A.﹣7B.﹣3C.﹣9D.﹣5
40.(2022·浙江金华·七年级期末)下列不能表示“2a”的意义的是( )
A.2个a相乘B.2个a相加C.a的2倍D.2的a倍
41.(2022·浙江绍兴·七年级期末)下列说法不正确的是( )
A.是2个数a的和B.是2和数a的积
C.是单项式D.是偶数
42.(2022·浙江丽水·七年级期末)学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人,现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍,设应调往甲处x人,则可列方程为( )
A. B.
C.D.
43.(2022·浙江台州·七年级期末)若,那么下列等式一定成立的式( )
A.B.C.D.
44.(2022·浙江台州·七年级期末)如果是关于的方程的解,那么的值是( )
A.1B.2C.D.
45.(2022·浙江衢州·七年级期末)下列方程中,以x=2为解的方程是( )
A.2(x+2)=0B.3(x﹣1)=9C.4x﹣1=3xD.3x+1=2x+3
46.(2022·浙江杭州·七年级期末)方程=1﹣去分母后,正确的是( )
A.2(3x﹣1)=1﹣4x﹣1B.2(3x﹣1)=6﹣4x+1
C.2(3x﹣1)=6﹣4x﹣1D.2(3x﹣1)=1﹣4x+1
47.(2022·浙江温州·七年级期末)解方程,以下去括号正确的是( )
A.B.C.D.
48.(2022·浙江绍兴·七年级期末)把这个数填入方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图),是世界上最早的“幻方”.图是仅可以看到部分数值的“九宫格”,则其中的值为:( )
A.B.C.D.
49.(2022·浙江绍兴·七年级期末)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x个字,则下面所列方程正确的是( ).
A.x+2x+4x=34 685B.x+2x+3x=34 685
C.x+2x+2x=34 685D.x+x+x=34 685
50.(2022·浙江丽水·七年级期末)小王准备从A地去往B地,打开导航,显示两地距离为50km,但导航提供的三条可选路线长却分别为56km,66km,61km(如图).能解释这一现象的数学知识是( )
A.两点之间,线段最短
B.垂线段最短
C.两点之间,直线最短
D.两点确定一条直线
51.(2022·浙江台州·七年级期末)小明从点A起跳,落脚点为点B,已知AB=2.5 m,则小明跳远的成绩可能是( )
A.2.45 mB.2.55 mC.2.6 mD.2.7 m
52.(2022·浙江金华·七年级期末)把弯曲的公路改直,就能够缩短路程,这样设计的依据是( )
A.两点确定一条直线
B.两点之间线段最短
C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线
D.连接直线外一点与直线上各点的所有连线中,垂线段最短
53.(2022·浙江台州·七年级期末)小明在做一道数学题.直线AB,CD相交于点O,∠BOC=25°,过点O作,求∠AOE的度数.小明得到,但老师说他少了一个答案.那么∠AOE的另一个值是( )
A.105°B.115°C.125°D.135°
54.(2022·浙江湖州·七年级期末)一个角的度数是42°46′,则它的余角的度数为( )
A.47°14′B.47°54′C.57°14′D.37°54′
二、填空题
55.(2022·浙江宁波·七年级期末)在数轴上与表示﹣2的点相距3个单位长度的点表示的数是 _____.
56.(2022·浙江绍兴·七年级期末)用“”或“=”连接:______3.
57.(2022·浙江衢州·七年级期末)﹣(﹣2)=___.
58.(2022·浙江宁波·七年级期末)如果温度上升℃,记作℃,那么温度下降℃记作________℃.
59.(2022·浙江衢州·七年级期末)如图是北京和巴黎的时差,则当巴黎时间为8:30时,北京时间为 _____.
60.(2022·浙江温州·七年级期末)计算:_____.
61.(2022·浙江台州·七年级期末)与最接近的整数是______.
62.(2022·浙江宁波·七年级期末),,这三个数中, 最小的数是_______.
63.(2022·浙江杭州·七年级期末)已知某数的一个平方根为,则该数是________,它的另一个平方根是________.
64.(2022·浙江绍兴·七年级期末)计算:______.
65.(2022·浙江绍兴·七年级期末)若一个数的平方等于6,则这个数等于______.
66.(2022·浙江宁波·七年级期末)计算:______ ,______,______.
67.(2022·浙江舟山·七年级期末)用代数式表示:x的2倍与y的平方的差___________.
68.(2022·浙江台州·七年级期末)写出一个系数为3,次数为2的单项式. _____.
69.(2022·浙江台州·七年级期末)若,则______.
70.(2022·浙江湖州·七年级期末)单项式的系数为____________.
71.(2022·浙江杭州·七年级期末)若2a﹣b﹣2=0,则4a﹣2b﹣5=_____.
72.(2022·浙江杭州·七年级期末)3x﹣7x=_____.
73.(2022·浙江丽水·七年级期末)x的3倍与y的差是_________.
74.(2022·浙江杭州·七年级期末)请写出一个次数为3,系数是负数的单项式:____________.
75.(2022·浙江宁波·七年级期末)已知,则________.
76.(2022·浙江宁波·七年级期末)长方体的底面是边长为的正方形,高为,则它的体积为__________________.
77.(2022·浙江丽水·七年级期末)已知是一元一次方程的解,则a的值是________.
78.(2022·浙江舟山·七年级期末)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买一只羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设羊价为x钱,所列方程是_______.
79.(2022·浙江宁波·七年级期末)若关于的方程的解是,则的值是______.
80.(2022·浙江湖州·七年级期末)一元一次方程x+=-3x,处是被墨水盖住的常数,已知方程的解是x=5,那么处的常数是_______.
81.(2022·浙江宁波·七年级期末)对实数、规定一种新运算,若,则方程的解是__________________.
82.(2022·浙江丽水·七年级期末)如图,P是线段MN上一点,Q是线段PN的中点.若MN=10,MP=6,则MQ的长是____.
83.(2022·浙江台州·七年级期末)如图,小华同学的家在点P处,他想尽快到公路边,所以选择沿线段PC去公路边,那么他的这一选择体现的数学基本事实是______.
84.(2022·浙江舟山·七年级期末)若一个角是,则它的补角是_________.
85.(2022·浙江舟山·七年级期末)计算:35°49'+44°26'=__________.
86.(2022·浙江台州·七年级期末)如图,点是线段的中点,则线段与线段满足数量关系______.
87.(2022·浙江金华·七年级期末)如图,将两块直角三角尺的直角顶点C叠放在一起.若,则∠ACB的度数为______.
三、解答题
88.(2022·浙江嘉兴·七年级期末)计算:
(1) (2)
89.(2022·浙江台州·七年级期末)计算:.
90.(2022·浙江金华·七年级期末)计算:
91.(2022·浙江绍兴·七年级期末)计算下列各题,并写出必要的计算步骤:
(1); (2)
92.(2022·浙江杭州·七年级期末)计算:
(1) (2)
93.(2022·浙江丽水·七年级期末)计算:
(1)-9+5+3; (2).
94.(2022·浙江宁波·七年级期末)计算
(1) (2)
95.(2022·浙江杭州·七年级期末)化简:
(1); (2); (3).
96.(2022·浙江丽水·七年级期末)小慧解方程的过程如下所示:
解:去分母,得①
去括号,得②
移项,得③
合并同类项,得④
两边同除以7,得⑤
(1)她解答过程中错误的步骤是 ;
(2)请写出正确的解答过程.
97.(2022·浙江宁波·七年级期末)如图,已知直线l和直线l外A,B,C三点,按下列要求画图:
(1)画射线AB,画直线BC;
(2)在直线l上确定点E,使得AE+CE最小,并说明理由.
98.(2022·浙江金华·七年级期末)如图,直线AB与直线CD相交于点O,∠COE=135°,∠BOD=45°,则OE⊥AB.请说明理由(补全解答过程).
解:∵∠AOC=∠BOD=45° ;
∴∠AOE= =( °);
∴OE⊥AB .
99.(2022·浙江金华·七年级期末)已知线段AB与点C的位置如图所示,按下列要求画出图形.
(1)作射线CB;
(2)作直线AC;
(3)①延长AB至点E,使得AE=3AB;
②在①的条件下,若AB=2cm,则BE= cm.
100.(2022·浙江台州·七年级期末)__________.
相关试卷
这是一份浙教版数学七年级上学期期中【夯实基础60题考点专练】(解析版),文件包含浙教版数学七年级上学期期中夯实基础60题考点专练原卷版doc、浙教版数学七年级上学期期中夯实基础60题考点专练解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份浙教版数学九年级上学期期中【夯实基础60题考点专练】(2份,原卷版+解析版),文件包含浙教版数学九年级上学期期中夯实基础60题考点专练原卷版doc、浙教版数学九年级上学期期中夯实基础60题考点专练解析版doc等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
这是一份浙教版数学八年级上学期期末【基础100题考点专练】(2份,原卷版+解析版),文件包含浙教版数学八年级上学期期末基础100题考点专练原卷版doc、浙教版数学八年级上学期期末基础100题考点专练解析版doc等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。