


吉林省长春市东北师范大学附属中学2025届高三上学期第二次摸底考试数学试题(含答案)
展开
这是一份吉林省长春市东北师范大学附属中学2025届高三上学期第二次摸底考试数学试题(含答案),共9页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。
1.设集合A={x∈N|−2y,则下列不等式一定成立的是( )
A. x−1>1−yB. x−1>y−1C. x−y>1−yD. 1−x>y−x
10.已知函数f(x)= 3+2sinx−sin2x,则下列结论正确的有( )
A. 函数f(x)的最小正周期为πB. 函数f(x)在[−π,π]上有2个零点
C. 函数f(x)的图象关于(π, 3)对称D. 函数f(x)的最小值为− 3
11.已知x1是函数fx=x+1−lnx+2的零点,x2是函数gx=x2−2ax+4a+4的零点,且满足x1−x2≤1,则实数a的取值可能是( )
A. −1B. −2C. 2−2 2D. 4−4 2
三、填空题:本题共3小题,每小题5分,共15分。
12.复数z满足z−5=z−1=z+i,则z= .
13.已知函数f(x)的定义域为R,y=f(x)+ex是偶函数,y=f(x)−3ex是奇函数,则f(x)的最小值为 .
14.莱洛三角形,也称圆弧三角形,是一种特殊三角形,在建筑、工业上应用广泛,如图所示,分别以正三角形ABC的顶点为圆心,以边长为半径作圆弧,由这三段圆弧组成的曲边三角形即为莱洛三角形,已知A,B两点间的距离为2,点P为AB⌢上的一点,则PA⋅(PB+PC)的最小值为 .
四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。
15.(本小题13分)
在▵ABC中,角A,B,C的对边分别为a,b,c,若2asinA=2sinB+sinCb+2sinC+sinBc.
(1)求A的大小;
(2)若m=1,sinB,n=sinC,1,求m⋅n的最大值.
16.(本小题15分)
已知数列an的首项a1=45,且满足an+1=4anan+3,设bn=1an−1.
(1)求证:数列bn为等比数列;
(2)若1a1+1a2+1a3+⋯+1an>2024,求满足条件的最小正整数n.
17.(本小题15分)
记△ABC的内角A,B,C的对边分别为a,b,c,已知A=5π6,D是边BC上的一点,且sin∠BADb+sin∠CADc=32a.
(1)证明:AD=13a;
(2)若CD=2BD,求cs∠ADC.
18.(本小题17分)
已知函数f(x)=ex+xsinx+csx−ax−2(a∈R).
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)≥0对任意x∈[0,+∞)恒成立,求a的取值范围.
19.(本小题17分)
置换是代数的基本模型,定义域和值域都是集合A=1,2,…,n,n∈N+的函数称为n次置换.满足对任意i∈A,fi=i的置换称作恒等置换.所有n次置换组成的集合记作Sn.对于fi∈Sn,我们可用列表法表示此置换:fi=1&2&⋯&nf1&f2&⋯&fn,记fi=f1i,ffi=f2i,ff2i=f3i,⋯,ffk−1i=fki,i∈A,k∈N+.
(1)若fi∈S4,fi=1&2&3&44&2&1&3,计算f3i;
(2)证明:对任意fi∈S4,存在k∈N+,使得fki为恒等置换;
(3)对编号从1到52的扑克牌进行洗牌,分成上下各26张两部分,互相交错插入,即第1张不动,第27张变为第2张,第2张变为第3张,第28张变为第4张,,依次类推.这样操作最少重复几次就能恢复原来的牌型?请说明理由.
参考答案
1.B
2.B
3.D
4.C
5.B
6.D
7.C
8.A
9.BCD
10.BC
11.AC
12.3 2
13.2 2
14.10−4 7
15.解:(1)由已知,根据正弦定理得2a2=2b+cb+2c+bc
即a2=b2+c2+bc
由余弦定理得a2=b2+c2−2bccsA
故csA=−12,因为A∈0,π,所以A=2π3.
(2)m⋅n=sinB+sinC,由(1)得:
sinB+sinC=sinB+sinπ3−B= 32csB+12sinB=sinπ3+B,
因为B∈0,π3,则B+π3∈π3,2π3,
故当B+π3=π2,即B=π6时,sinB+sinC取得最大值1.
16.解:(1)∵bn+1bn=1an+1−11an−1=an+34an−11an−1=31−an41−an=34,
b1=1a1−1=14,所以数列bn为首项为b1=14,公比为34等比数列.
(2)由(1)可得1a1−1+1a2−1+1a3−1+⋯+1an−1
=141−34n1−34
=1−34n,
即1a1+1a2+1a3+⋯+1an−n=1−34n,
∴1a1+1a2+1a3+⋯+1an=n+1−34n,
而因为y=x+1,y=−34x在0,+∞上均单调递增,则n+1−34n随着n的增大而增大,
要使1a1+1a2+1a3+⋯+1an>2024,即n+1−34n>2024,则n≥2024,
∴n的最小值为2024.
17.解:(1)证明:在△ABC中,由正弦定理得asin∠BAC=bsinB=csinC,
在△ABD中,由正弦定理得sin∠BADBD= sinBAD,
则sin∠BAD=BD⋅sinBAD,
在△ACD中,由正弦定理得sin∠CADCD=sinCAD,
则sin∠CAD=CD⋅sinCAD,
所以sin∠BADb+sin∠CADc=BD⋅sinBAD⋅b+CD⋅sinCAD⋅c
=BD⋅sin∠BACAD⋅a+CD⋅sin∠BACAD⋅a=12(BD+CD)AD⋅a=12aAD⋅a=12AD=32a,
所以AD=13a;
(2)由CD=2BD,得CD=23a,BD=13a,又 AD=13a ,
所以在△ACD和△ABD中,由余弦定理得
cs∠ADC=(13a)2+(23a)2−b22×13a×23a,cs∠ADB=(13a)2+(13a)2−c22×13a×13a,
又∠ADC+∠ADB=π,则cs∠ADC+cs∠ADB=0,
所以(13a)2+(23a)2−b22×13a×23a+(13a)2+(13a)2−c22×13a×13a=0 ,
整理得a2−b2=2c2,
又∠BAC=5π6,所以在△ABC中,由余弦定理得a2= b2+c2−2bccs5π6=b2+
c2+ 3bc,
联立 a2−b2=2c2a2=b2+c2+ 3bc,解得c= 3ba= 7b,
故cs∠ADC=(13a)2+(23a)2−b22×13a×23a=59×7b2−b249×7b2=1314 .
18.解:(1)当a=2 时, f(x)=ex+xsinx+csx−2x−2 ,
则f′(x)=ex+xcsx−2 ,
所以f′(0)=−1,
又f(0)=1+1−2=0,
所以曲线y=f(x) 在点(0,f(0))处的切线方程为y=−x;
(2)f(x)=ex+xsinx+csx−ax−2(a∈R),则f′(x)=ex+xcsx−a ,
令ℎ(x)=f′(x)(x⩾0),则ℎ′(x)=ex+csx−xsinx,
令u(x)=ex−1−x(x⩾0),则u′(x)=ex−1⩾0,
所以u(x)在区间[0,+∞)上单调递增,
则u(x)⩾u(0)=0,即ex−(x+1)⩾0,
当x⩾0时,sinx⩽1,则−xsinx⩾−x,
又csx⩾−1,所以csx−xsinx⩾−(x+1),
所以ex+csx−xsinx⩾ex−(x+1)⩾0,
则ℎ′(x)⩾0,
所以ℎ(x)在区间[0,+∞)上单调递增,即f′(x)在区间[0,+∞)上单调递增,
所以f′(x)⩾f′(0)=1−a,
①当1−a⩾0,即a⩽1时,f′(x)⩾f′(0)⩾0,则f(x)在区间[0,+∞)上单调递增,
所以f(x)⩾f(0)=0,符合题意;
②当1−a1时, f′(a)=ea+acsa−a≥ea−2a,
令g(a)=ea−2a(a>1) ,
则g′(a)=ea−2>e−2>0 ,
所以g(a)在区间(1,+∞)上单调递增,
则g(a)>g(1)=e−2>0,故f′(a)>0,
又f′(0)
相关试卷
这是一份吉林省长春市东北师范大学附属中学2024-2025学年高三上学期第二次摸底考试数学试题,共6页。
这是一份吉林省东北师范大学附属中学2024-2025学年高三上学期第二次摸底考试数学试题,共19页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份吉林省长春市东北师范大学附属中学2024-2025学年高三上学期第一次摸底考试数学试题(Word版附解析),文件包含吉林省东北师范大学附属中学2024-2025学年高三上学期第一次摸底考试数学试卷Word版含解析docx、吉林省东北师范大学附属中学2024-2025学年高三上学期第一次摸底考试数学试卷Word版无答案docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
