辽宁省阜新市中考数学试卷(含解析版)
展开
这是一份辽宁省阜新市中考数学试卷(含解析版),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1.﹣3的绝对值是( )
A. 3B. ﹣C. ﹣3D.
2.某几何体的三视图如图所示,该几何体是( )
A. B. C. D.
3.某中学篮球队12名队员的年龄如下表所示:
则这12名队员年龄的众数和平均数分别是( )
A. 15,15B. 15,16C. 16,16D. 16,16.5
4.不等式组的解集,在数轴上表示正确的是( )
A. B.
C. D.
5.反比例函数y=的图象位于平面直角坐标系的( )
A. 第一、三象限B. 第二、四象限
C. 第一、二象限D. 第三、四象限
6.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是( )
A. 30°B. 40°C. 50°D. 60°
二、填空题(每小题3分,共18分)
7.函数y=的自变量取值范围是 .
8.如图,直线a∥b,被直线c所截,已知∠1=70°,那么∠2的度数为 .
9.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 个.
10.如图,点E是▱ABCD的边AD的中点,连接CE交BD于点F,如果S△DEF=a,那么S△BCF= .
11.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为 m(结果保留根号).
12.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是 折.
三、解答题(13、14、15、16题每题10分,17、18题每题12分,共64分)
13.(1)计算:()﹣2+﹣2cs60°;
(2)先化简,再求值:(a﹣)÷,其中a=+1.
14.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,
(1)画出△AB′C′;
(2)写出点B′,C′的坐标;
(3)求出在△ABC旋转的过程中,点C经过的路径长.
15.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:
(1)本次调查共抽查了 名学生,两幅统计图中的m= ,n= .
(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?
16.为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.
(1)求篮球、足球的单价分别为多少元?
(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?
[
]
17.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.
(1)如图a,求证:△BCP≌△DCQ;
(2)如图,延长BP交直线DQ于点E.
①如图b,求证:BE⊥DQ;
②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
源:Z*xx*k.Cm]
18.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).
(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.
辽宁省阜新市中考数学试卷
参考答案与试题解析
一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共18分)
1.﹣3的绝对值是( )
A. 3B. ﹣C. ﹣3D.
考点:绝对值.
分析:根据一个负数的绝对值是它的相反数进行解答即可.
解答:解:|﹣3|=3,
故选:A.
点评:本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.
2.某几何体的三视图如图所示,该几何体是( )
A. B. C. D.
考点:简单组合体的三视图.
分析:根据几何体的三视图可以得出几何体,然后判断即可.
解答:解:根据题意发现主视图和左视图为矩形,俯视图是一个圆,可以得出这个图形是圆柱.
故选B.
点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及动手操作能力,较简单.
3.某中学篮球队12名队员的年龄如下表所示:
则这12名队员年龄的众数和平均数分别是( )
A. 15,15B. 15,16C. 16,16D. 16,16.5
考点:众数;加权平均数.
专题:计算题.
分析:根据表格中的数据,求出众数与平均数即可.
解答:解:根据题意得:这12名队员年龄的众数为16;平均数为=16,
故选C
点评:此题考查了众数,以及加权平均数,熟练掌握各自的定义是解本题的关键.
4.不等式组的解集,在数轴上表示正确的是( )
A. B. C. D.
考点:在数轴上表示不等式的解集;解一元一次不等式组.
分析:先解不等式,然后在数轴上表示出解集.
解答:解:解不等式1﹣x<2得,x>﹣1,
解不等式3x≤6得:x≤2,
则不等式的解集为:
.
故选B.
点评:本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.
5.反比例函数y=的图象位于平面直角坐标系的( )
A. 第一、三象限B. 第二、四象限C. 第一、二象限D. 第三、四象限
考点:反比例函数的性质.
分析:根据反比例函数的图象性质求解.
解答:解:∵k=2>0,
∴反比例函数y=的图象在第一,三象限内,
故选A
点评:此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.
6.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是( )
A. 30°B. 40°C. 50°D. 60°
考点:圆周角定理.
专题:计算题.
分析:根据图形,利用圆周角定理求出所求角度数即可.
解答:解:∵∠AOB与∠ACB都对,且∠AOB=100°,
∴∠ACB=∠AOB=50°,
故选C
点评:此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.
二、填空题(每小题3分,共18分)
7.函数y=的自变量取值范围是 x≠2 .
考点:函数自变量的取值范围.
分析:根据分式有意义的条件:分母不等于0,即可求解.
解答:解:根据题意得,2﹣x≠0,解得:x≠2.
故答案是:x≠2.
点评:本题考查的知识点为:分式有意义,分母不为0.
8.如图,直线a∥b,被直线c所截,已知∠1=70°,那么∠2的度数为 110° .
考点:平行线的性质.
分析:先根据平行线的性质求出∠3的度数,再由补角的定义即可得出结论.
解答:解:∵直线a∥b,被直线c所截,∠1=70°,
∴∠3=∠1=70°,
∴∠2=180°﹣∠3=180°﹣70°=110°.
故答案为:110°.
点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.
9.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复或发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为 20 个.
考点:利用频率估计概率.
分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.
解答:解:设暗箱里白球的数量是n,则根据题意得:=0.2,
解得:n=20,
故答案为:20.
点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.
10.如图,点E是▱ABCD的边AD的中点,连接CE交BD于点F,如果S△DEF=a,那么S△BCF= 4a .
考点:相似三角形的判定与性质;平行四边形的性质.
分析:根据平行四边形的性质得到AD∥BC和△EFD∽△CFB,根据相似三角形的面积比是相似比的平方得到答案.
解答:解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴△EFD∽△CFB,
∵E是边AD的中点,
∴DE=BC,
∴S△DEF:S△BCF=1:4,
∵S△DEF=a,∴S△BCF=4a,
故答案为:4a.
点评:本题考查的是平行四边形的性质和相似三角形的判定和性质,掌握三角形相似的判定定理和性质定理是解题的关键,注意:相似三角形的面积比是相似比的平方.
11.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为 10 m(结果保留根号).
考点:解直角三角形的应用-仰角俯角问题.
分析:由题意得,在直角三角形ACB中,知道了已知角的邻边求对边,用正切函数计算即可.
解答:解:∵自楼的顶部A看地面上的一点B,俯角为30°,
∴∠ABC=30°,
∴AC=AB•tan30°=30×=10(米).
∴楼的高度AC为10米.
故答案为:10.
点评:本题考查了解直角三角形的应用﹣仰角俯角问题,俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.
12.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是 七 折.
考点:一次函数的应用.
分析:根据函数图象求出打折前后的单价,然后解答即可.
解答:解:打折前,每本练习本价格:20÷10=2元,
打折后,每本练习本价格:(27﹣20)÷(15﹣10)=1.4元,
=0.7,
所以,在这个超市买10本以上的练习本优惠折扣是七折.
故答案为:七.
点评:本题考查了一次函数的应用,比较简单,准确识图并求出打折前后每本练习本的价格是解题的关键.
三、解答题(13、14、15、16题每题10分,17、18题每题12分,共64分)
13.(1)计算:()﹣2+﹣2cs60°;
(2)先化简,再求值:(a﹣)÷,其中a=+1.
考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.
分析:(1)分别根据负整数指数幂的计算法则、特殊角的三角函数值及数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;
(2)先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.
解答:解:(1)原式=4+2﹣2×
=6﹣1
=5;
(2)原式=•
=a﹣1,
当a=+1时,原式=+1﹣1=.
点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
14.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,
(1)画出△AB′C′;
(2)写出点B′,C′的坐标;
(3)求出在△ABC旋转的过程中,点C经过的路径长.
考点:作图-旋转变换;弧长的计算.
分析:(1)在平面直角坐标系中画出△ABC,然后根据网格结构找出点B、C的对应点B′,C′的位置,然后顺次连接即可;
(2)根据图形即可得出点A的坐标;
(3)利用AC的长,然后根据弧长公式进行计算即可求出点B转动到点B′所经过的路程.
解答:解:(1)△AB′C′如图所示;
(2)点B′的坐标为(3,2),点C′的坐标为(3,5);
(3)点C经过的路径为以点A为圆心,AC为半径的圆弧,路径长即为弧长,
∵AC=4,
∴弧长为:==2π,
即点C经过的路径长为2π.
点评:本题考查了利用旋转变换作图,弧长的计算,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.
15.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:
(1)本次调查共抽查了 120 名学生,两幅统计图中的m= 48 ,n= 15 .
(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?
(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?
考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.
分析:(1)用A类的人数和所占的百分比求出总人数,用总数减去A,C,D类的人数,即可求出m的值,用C类的人数除以总人数,即可得出n的值;
(2)用该校喜欢阅读“A”类图书的学生人数=学校总人数×A类的百分比求解即可;
(3)列出图形,即可得出答案.
解答:解:(1)这次调查的学生人数为42÷35%=120(人),
m=120﹣42﹣18﹣12=48,
18÷120=15%;所以n=15
故答案为:120,48,15.
(2)该校喜欢阅读“A”类图书的学生人数为:960×35%=336(人),
(3)抽出的所有情况如图:
两名参赛同学为1男1女的概率为:.
点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
16.为了丰富学生的体育生活,学校准备购进一些篮球和足球,已知用900元购买篮球的个数比购买足球的个数少1个,足球的单价为篮球单价的0.9倍.
(1)求篮球、足球的单价分别为多少元?
(2)如果计划用5000元购买篮球、足球共52个,那么至少要购买多少个足球?
考点:一元一次不等式的应用;二元一次方程组的应用.
分析:(1)设篮球、足球的单价分别为x,y元,列出二元一次方程组,即可求出x和y的值;
(2)由(1)中的单价可列出一元一次不等式,解不等式即可得到至少要购买多少个足球.
解答:解:(1)设篮球、足球的单价分别为x,y元,由题意列方程组得:
,
解得:,
答:求篮球、足球的单价分别为100,90元;
(2)设至少要购买m个足球,由题意得:
52×90+100m≤5000,
解得:m≤3.2,
所以至少要购买3个足球.
点评:此题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解决本题的关键.
17.如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.
(1)如图a,求证:△BCP≌△DCQ;
(2)如图,延长BP交直线DQ于点E.
①如图b,求证:BE⊥DQ;
②如图c,若△BCP为等边三角形,判断△DEP的形状,并说明理由.
考点:四边形综合题.
分析:(1)根据旋转的性质证明∠BCP=∠DCQ,得到△BCP≌△DCQ;
(2)①根据全等的性质和对顶角相等即可得到答案;
②根据等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,判断△DEP的形状.
解答:(1)证明:∵∠BCD=90°,∠PCQ=90°,
∴∠BCP=∠DCQ,
在△BCP和△DCQ中,
,
∴△BCP≌△DCQ;
(2)①如图b,∵△BCP≌△DCQ,
∴∠CBF=∠EDF,又∠BFC=∠DFE,
∴∠DEF=∠BCF=90°,
∴BE⊥DQ;
②∵△BCP为等边三角形,
∴∠BCP=60°,∴∠PCD=30°,又CP=CD,
∴∠CPDF=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,
∴∠EPD=45°,∠EDP=45°,
∴△DEP为等腰直角三角形.
点评:本题考查的是正方形的性质、三角形全等的判定和性质以及旋转的性质,掌握正方形的四条边相等、四个角都是直角,旋转的性质是解题的关键.
18.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).
(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.
考点:二次函数综合题.
分析:(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;
(2)设P点坐标为(x,﹣x2﹣2x+3),根据S△AOP=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;
(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.
解答:解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得
,
解得.
故该抛物线的解析式为:y=﹣x2﹣2x+3.
(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).
∵S△AOP=4S△BOC,
∴×3×|﹣x2﹣2x+3|=4××1×3.
整理,得(x+1)2=0或x2+2x﹣7=0,
解得x=﹣1或x=﹣1±.
则符合条件的点P的坐标为:(﹣1,4)或(﹣1+,﹣4)或(﹣1﹣,﹣4);
(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,
得,
解得.
即直线AC的解析式为y=x+3.
设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),
QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,
∴当x=﹣时,QD有最大值.
点评:此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.
年龄(岁)
15
16
17
18
人数
4
5
2
1
年龄(岁)
15
16
17
18
人数
4
5
2
1
相关试卷
这是一份辽宁省阜新市中考数学试卷(含解析版),共21页。
这是一份辽宁省阜新市中考数学试卷(含解析版),共27页。
这是一份辽宁省阜新市中考数学试卷(含解析版),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。