所属成套资源:(寒假)沪教版数学九年级重难点讲练测 (2份,原卷版+解析版)
(寒假)沪教版数学九年级重难点讲练测第01讲 圆的确定与圆心角、弧、弦、弦心距之间的关系(2份,原卷版+解析版)
展开
这是一份(寒假)沪教版数学九年级重难点讲练测第01讲 圆的确定与圆心角、弧、弦、弦心距之间的关系(2份,原卷版+解析版),文件包含寒假沪教版数学九年级重难点讲练测第01讲圆的确定与圆心角弧弦弦心距之间的关系原卷版doc、寒假沪教版数学九年级重难点讲练测第01讲圆的确定与圆心角弧弦弦心距之间的关系解析版doc等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。
考点一:圆的认识
考点二:点与圆的位置关系
考点三:圆心角、弧、弦的关系
考点四:三角形的外接圆与外心
考点五:综合应用
【基础知识】
一.圆的认识
(1)圆的定义
定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.
定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.
(2)与圆有关的概念
弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.
连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.
(3)圆的基本性质:①轴对称性.②中心对称性.
二.点与圆的位置关系
(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:
①点P在圆外⇔d>r
②点P在圆上⇔d=r
①点P在圆内⇔d<r
(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.
三.圆心角、弧、弦的关系
(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.
(3)正确理解和使用圆心角、弧、弦三者的关系
三者关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.
(4)在具体应用上述定理解决问题时,可根据需要,选择其有关部分.
四.三角形的外接圆与外心
(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.
(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.
(3)概念说明:
①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.
②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.
③找一个三角形的外心,就是找一个三角形的三条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.
【考点剖析】
一.圆的认识(共2小题)
1.(2020秋•浦东新区月考)下列说法正确的是( )
A.半圆是弧
B.过圆心的线段是直径
C.弦是直径
D.长度相等的两条弧是等弧
2.(2018秋•嘉定区期末)已知点C在线段AB上(点C与点A、B不重合),过点A、B的圆记作为圆O1,过点B、C的圆记作为圆O2,过点C、A的圆记作为圆O3,则下列说法中正确的是( )
A.圆O1可以经过点CB.点C可以在圆O1的内部
C.点A可以在圆O2的内部D.点B可以在圆O3的内部
二.点与圆的位置关系(共7小题)
3.(2022•宝山区模拟)在直角坐标平面内,如果点B(a,0)在以A(1,0)为圆心,2为半径的圆内,那么a的取值范围是( )
A.a>﹣1B.a<3C.﹣1<a<3D.﹣1≤a≤3.
4.(2022•嘉定区校级模拟)矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )
A.点B,C均在圆P外
B.点B在圆P外,点C在圆P内
C.点B在圆P内,点C在圆P外
D.点B,C均在圆P内
5.(2022春•徐汇区校级期中)在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是( )
A.当a=﹣1时,点B在圆A上
B.当a<1时,点B在圆A内
C.当a<﹣1时,点B在圆A外
D.当﹣1<a<3时,点B在圆A内
6.(2022•静安区二模)如图,已知矩形ABCD的边AB=6,BC=8,现以点A为圆心作圆,如果 B、C、D至少有一点在圆内,且至少有一点在圆外,那么⊙A半径r的取值范围是 .
7.(2022•黄浦区二模)已知在△ABC中,AB=AC,BC=10,ctB=,如果顶点C在⊙B内,顶点A在⊙B外,那么⊙B的半径r的取值范围是 .
8.(2022•宝山区模拟)已知圆O的半径为5,点A在圆O外,如果线段OA的长为d,那么d的取值范围是 .
9.(2022春•长宁区校级期中)已知:如图,E是菱形ABCD内一点,∠BEC=90°,DF⊥CE,垂足为点F,且DF=CE,联结AE.
(1)求证:菱形ABCD是正方形;
(2)当F是线段CE的中点时,求证:点F在以AB为半径的⊙A上.
三.圆心角、弧、弦的关系(共4小题)
10.(2022春•浦东新区校级期中)已知OA,OB,OM均是⊙O的半径,OA⊥OB,=.如果+=k,那么k的值是 .
11.(2022春•徐汇区校级期中)⊙O中,点C在直径AB上,AC=3BC,过点C作弦EF⊥AB,那么∠EOF= 度.
12.(2022•宝山区模拟)已知△ABC中,∠B=45°,AB=,tanC=2,⊙O过点A、C,交BC边于点D.且,求CD的长.
13.(2022春•长宁区校级月考)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.
四.三角形的外接圆与外心(共8小题)
14.(2022•长宁区模拟)如图,⊙O的半径为10cm,△ABC内接于⊙O,圆心O在△ABC内部.如果AB=AC,BC=12cm,那么△ABC的面积为 cm2.
15.(2022春•虹口区期中)半径为4的圆的内接正三角形的边长为 .
16.(2022•松江区二模)如图,已知⊙O是△ABC的外接圆,AB=AC=8,OA=5.
(1)求∠BAO的正弦值;
(2)求弦BC的长.
17.(2022•静安区二模)如图,已知△ABC外接圆的圆心O在高AD上,点E在BC延长线上,EC=AB.
(1)求证:∠B=2∠AEC;
(2)当OA=2,cs∠BAO=时,求DE的长.
18.(2021•上海模拟)已知:如图,圆O是△ABC的外接圆,AO平分∠BAC.
(1)求证:△ABC是等腰三角形;
(2)当OA=2,AB=3,求边BC的长.
19.(2021•崇明区二模)如图,⊙O是△ABC的外接圆,AB=5,BC=8,sinB=.
(1)求边AC的长;
(2)求⊙O的半径长.
20.(2020秋•闵行区期末)如图,⊙O是△ABC的外接圆,AB长为4,AB=AC,连接CO并延长,交边AB于点D,交AB于点E,且E为弧AB的中点.求:
(1)边BC的长;
(2)⊙O的半径.
21.(2020•黄浦区二模)已知:如图,圆O是△ABC的外接圆,AO平分∠BAC.
(1)求证:△ABC是等腰三角形;
(2)当OA=4,AB=6,求边BC的长.
五.综合应用(共7小题)
22.(2022•松江区二模)如图,已知Rt△ABC中,∠C=90°,tanA=.D、E分别是边BC、AB上的点,DE∥AC,且BD=2CD.如果⊙E经过点A,且与⊙D外切,那么⊙D与直线AC的位置关系是( )
A.相离B.相切C.相交D.不能确定
23.(2022春•虹口区校级期中)如图,AB是⊙O的直径,点D,C在⊙O上,∠DOC=90°,AD=,BC=1,则⊙O的半径为( )
A.B.C.D.
24.(2022•静安区二模)如图,已知半圆直径AB=2,点C、D三等分半圆弧,那么△CBD的面积为 .
25.(2022春•虹口区校级期中)如图,AB是圆O的直径,==,AC与OD交于点E.如果AC=3,那么DE的长为 .
26.(2022•长宁区二模)如图,已知在半圆O中,AB是直径,CD是弦,点E、F在直径AB上,且四边形CDFE是直角梯形,∠C=∠D=90°,AB=34,CD=30.求梯形CDFE的面积.
27.(2022春•金山区校级月考)已知CD为⊙O的直径,A、B为⊙O上两点,点C为劣弧AB中点,连接DA、BA、AC,且∠B=30°.
(1)求证:∠D=30°;
(2)F、G分别为线段CD、AC上两点,满足DF=AG,连接AF、OG,取OG中点H,连接CH,请猜测AF与CH之间的数量关系,并证明.
28.(2022•金山区校级模拟)如图,已知Rt△ABC中,∠ACB=90°,ct∠BAC=2,BC=4,以边AC上一点O为圆心,OA为半径的⊙O经过点B.
(1)求⊙O的半径;
(2)点P是劣弧的中点,求tan∠PAB的值.
【过关检测】
1.(2021·上海浦东新·模拟预测)下列四个命题:
①同圆或等圆中,相等的弦所对的弧相等;
②同圆或等圆中,相等的弧所对的弦相等;
③同圆或等圆中,相等的弦的弦心距相等;
④同圆或等圆中,相等的弧所对的圆心角相等.
真命题的个数有( )
A.1个B.2个C.3个D.4个
2.(2019·上海嘉定·九年级期末)已知点在线段上(点与点不重合),过点的圆记为圆,过点的圆记为圆,过点的圆记为圆,则下列说法中正确的是( )
A.圆可以经过点B.点可以在圆的内部
C.点可以在圆的内部D.点可以在圆内部
3.(2018·上海宝山·九年级期末)若⊙A的半径为5,圆心A的坐标是(1,2),点P的坐标是(5,2),那么点P的位置为( )
A.在⊙A内B.在⊙A上C.在⊙A外D.不能确定
4.(2019·上海上海·九年级期中)如图,在△ABC中,AB=AC,BC=4,tanB=2,以AB的中点D为圆心,r为半径作⊙D,如果点B在⊙D内,点C在⊙D外,那么r可以取( )
A.2B.3C.4D.5
二、填空题
5.(2021·上海浦东新·模拟预测)已知点C在线段AB上,且0<AC<AB.如果⊙C经过点A,那么点B与⊙C的位置关系是_____.
6.(2018·上海金山·九年级期末)如图, AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于点C,若OC=6,则AB的长等于__.
7.(2020·上海松江·二模)如图,已知AB、AC是⊙O的两条弦,且AO平分∠BAC.点M、N分别在弦AB、AC上,满足AM=CN.
(1)求证:AB=AC;
(2)联结OM、ON、MN,求证:.
8.(2021·上海嘉定·二模)已知四边形ABCD是菱形(如图),以点B为圆心,BD长为半径的圆分别与边AD、CD、BC、AB,相交于点E、F、G、H,联结BE.
(1)求证:;
(2)联结EG,如果,求证:.
9.(2018·上海普陀·一模)已知:在⊙O中,弦AB=AC,AD是⊙O的直径.
求证:BD=CD.
10.(2019·上海长宁·一模)如图,AB是圆O的一条弦,点O在线段AC上,AC=AB,OC=3,sinA=.求:(1)圆O的半径长;(2)BC的长.
11.(2019·上海市南塘中学中考模拟)如图,在中,,以点为圆心,长为半径的圆交于点,的延长线交⊙于点,连接,是⊙上一点,点与点位于两侧,且,连接.
(1)求证:;
(2)若,,求的长及的值.
12.(2021·上海杨浦·二模)已知:如图,AB是半圆O的直径,C是半圆上一点(不与点A、B重合),过点A作ADOC交半圆于点D,E是直径AB上一点,且AE=AD,联结CE、CD.
(1)求证:CE=CD;
(2)如果,延长EC与弦AD的延长线交于点F,联结OD,求证:四边形OCFD是菱形.
相关试卷
这是一份(寒假)浙教版数学七年级寒假讲练测第07讲 平行线 单元综合检测(难点)(2份,原卷版+解析版),文件包含寒假浙教版数学七年级寒假讲练测第07讲平行线单元综合检测难点原卷版doc、寒假浙教版数学七年级寒假讲练测第07讲平行线单元综合检测难点解析版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份人教版(2024)九年级上册第二十四章 圆24.1 圆的有关性质24.1.3 弧、弦、圆心角精品同步练习题,文件包含人教版初中数学九年级上册同步讲与练第21课弧弦圆心角圆周角教师版docx、人教版初中数学九年级上册同步讲与练第21课弧弦圆心角圆周角学生版docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
这是一份初中数学沪教版 (五四制)九年级下册27.2 圆心角、弧、弦、弦心距之间的关系课后测评,共54页。