北师大版(2024)6 利用三角函数测高课时训练
展开
这是一份北师大版(2024)6 利用三角函数测高课时训练,共8页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
1.如图,航模小组用无人机来测量建筑物BC的高度,无人机从A处测得建筑物顶部B的仰角为45°,测得底部C的俯角为60°,若此时无人机与该建筑物的水平距离AD为30 m,则该建筑物的高度BC为 m.(结果保留根号)
QQ
2.如图,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,且AM=100海里.那么该船继续航行__________海里可使渔船到达离灯塔距离最近的位置
Q
3.如图,无人机在空中C处测得地面A.B两点的俯角分别为60°、45°,如果无人机距地面高度CD为90米,点A.D.B在同一水平直线上,则A,B两点间的距离是 米.(结果保留根号)
4.一艘观光游船从港口A以北偏东60°的方向出港观光,航行60海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东30°方向,马上以40海里每小时的速度前往救援,海警船到达事故船C处所需的时间大约为_________小时(用根号表示).
5.如图,从甲楼顶部A处测得乙楼顶部D处的俯角α为30°,又从A处测得乙楼底部C处的俯角β为60°.已知两楼之间的距离BC为18米,则乙楼CD的高度为 .(结果保留根号)
6.如图,某轮船以每小时30海里的速度向正东方向航行,上午8:00,测得小岛C在轮船A的北偏东45°方向上;上午10:00,测得小岛C在轮船B的北偏西30°方向上,则轮船在航行中离小岛最近的距离约为 海里(精确到1海里,参考数据≈1.414,≈1.732).
7.某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历下亭C之间的距离约为 .(参考数据:tan37°≈,tan53°≈)
8.如图,某海防哨所(O)发现在它的北偏西30°,距离为500 m的A处有一艘船,该船向正东方向航行,经过几分钟后到达哨所东北方向的B处,此时该船距哨所的距离(OB)为 米.
二、选择题
9.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7 m,则树高BC为(用含α的代数式表示)( )
A.7sinαB.7csαC.7tanαD.
10.在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的( )
A.北偏东20°方向上 B.北偏西20°方向上
C.北偏西30°方向上 D.北偏西40°方向上
11.如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;
(2)量得测角仪的高度CD=a;
(3)量得测角仪到旗杆的水平距离DB=b.
利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )
A.a+btanαB.a+bsinαC.a+ D.a+
12.如图,在一笔直的海岸线l上有A.B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为( )
A.4km B.(2+)km C.2km D.(4-)km
13.如图,某校教学楼AB后方有一斜坡,斜坡与教学楼剖面在同一平面内,已知斜坡CD的长为6 m,坡度i=1:0.75,教学楼底部到斜坡底部的水平距离AC=8 m,在教学楼顶部B点测得斜坡顶部D点的俯角为46°,则教学楼的高度约为( )
(参考数据:sin46°≈0.72,cs46°≈0.69,tan46°≈1.04)
A.12.1 mB.13.3 mC.16.9 mD.18.1 m
14.如图,杭州市郊外一景区内有一条笔直的公路a经过两个景点A,B,景区管委会又开发了风景优美的景点C,经测量景点C位于景点A的北偏东60°方向,又位于景点B的北偏东30°方向,且景点A.B相距200m,则景点B.C相距的路程为( )
A.100 B.200 C.100 D.200
15.如图,为测量一根与地面垂直的旗杆AH的高度,在距离旗杆底端H10米的B处测得旗杆顶端A的仰角∠ABH=α,则旗杆AH的高度为( )
A.10sinα米B.10csα米C.米D.10tanα米
16.如图,一艘轮船在A处测得灯塔C在北偏西15°的方向上,该轮船又从A处向正东方向行驶40海里到达B处,测得灯塔C在北偏西60°的方向上,则轮船在B处时与灯塔C之间的距离(即BC的长)为( )
A.海里 B.海里
C.80海里 D.海里
17.温州市处于东南沿海,夏季经常遭受台风袭击.一次,温州气象局测得台风中心在温州市A的正西方向300千米的B处(如图),以每小时10千米的速度向东偏南30°的BC方向移动,并检测到台风中心在移动过程中,温州市A将受到影响,且距台风中心200千米的范围是受台风严重影响的区域.则影响温州市A的时间会持续多长?( )
A.5 B.6 C.8 D.10
18.如图,一艘海轮位于灯塔P的北偏东55°方向的A处,已知PA=6海里,如果海轮沿正南方向航行到灯塔的正东方向,则海轮航行的距离AB的长是( )
A.6海里 B.6cs55°海里 C.6sin55°海里 D.6tan55°海里
19.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为( )
A.200tan70°米 B.米 C.200sin 70°米 D.米
20.重庆实验外国语学校坐落在美丽且有灵气的华岩寺旁边,特别是金灿灿的大佛让身高1.6米的小王同学很感兴趣,刚刚学过三角函数知识,他就想测一下大佛的高度,小王到A点测得佛顶仰角为37°,接着向大佛走了10米来到B处,再经过一段坡度i=4:3,坡长为5米的斜坡BC到达C处,此时与大佛的水平距离DH=6.2米(其中点A,B,C,E.,F在同一平面内,点A,B,F在同一条直线上),请问大佛的高度EF为( )(参考数据:tan37°≈0.75,sin37°≈0.60,cs37°≈0.80).
A.15米B.16米C.17米D.18米
三、解答题
21.如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)
参考答案
1.(30+30). 2. 3.(30+90) 4.
5.12米. 6.38. 7.300 m. 8.250.
9.C.10.B.11.A.12.B.13.C.14.B.15.D.16.B.17.D.18.B.19.B.20.B.
21.解:如图,过点C作CD⊥AB于点D,
AB=20×1=20(海里),
∵∠CAF=60°,∠CBE=30°,
∴∠CBA=∠CBE+∠EBA=120°,∠CAB=90°-∠CAF=30°,
∴∠C=180°-∠CBA-∠CAB=30°,
∴∠C=∠CAB,
∴BC=BA=20(海里),
∠CBD=90°-∠CBE=60°,
∴CD=BC•sin∠CBD=20×≈17(海里).
相关试卷
这是一份北师大版(2024)九年级下册6 利用三角函数测高测试题,共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份北师大版九年级下册6 利用三角函数测高精品练习,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北师大版九年级下册6 利用三角函数测高练习题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。