年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    (江苏专用)中考数学真题分项汇编专题03方程与不等式(2份,原卷版+解析版)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      (江苏专用)中考数学真题分项汇编专题03方程与不等式(原卷版).doc
    • 解析
      (江苏专用)中考数学真题分项汇编专题03方程与不等式(解析版).doc
    (江苏专用)中考数学真题分项汇编专题03方程与不等式(原卷版)第1页
    (江苏专用)中考数学真题分项汇编专题03方程与不等式(原卷版)第2页
    (江苏专用)中考数学真题分项汇编专题03方程与不等式(原卷版)第3页
    (江苏专用)中考数学真题分项汇编专题03方程与不等式(解析版)第1页
    (江苏专用)中考数学真题分项汇编专题03方程与不等式(解析版)第2页
    (江苏专用)中考数学真题分项汇编专题03方程与不等式(解析版)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (江苏专用)中考数学真题分项汇编专题03方程与不等式(2份,原卷版+解析版)

    展开

    这是一份(江苏专用)中考数学真题分项汇编专题03方程与不等式(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题03方程与不等式原卷版doc、江苏专用中考数学真题分项汇编专题03方程与不等式解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
    1.(2022•无锡)分式方程的解是( )
    A.x=1B.x=﹣1C.x=3D.x=﹣3
    【分析】将分式方程转化为整式方程,求出x的值,检验即可得出答案.
    【解析】,
    方程两边都乘x(x﹣3)得:2x=x﹣3,
    解得:x=﹣3,
    检验:当x=﹣3时,x(x﹣3)≠0,
    ∴x=﹣3是原方程的解.
    故选:D.
    2.(2022•南通)李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是( )
    A.10.5%B.10%C.20%D.21%
    【分析】设该超市的月平均增长率为x,根据等量关系:1月份盈利额×(1+增长率)2=3月份的盈利额列出方程求解即可.
    【解析】设从1月到3月,每月盈利的平均增长率为x,由题意可得:
    3000(1+x)2=3630,
    解得:x1=0.1=10%,x2=﹣2.1(舍去),
    答:每月盈利的平均增长率为10%.
    故答案为:B.
    3.(2022•宿迁)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是( )
    A.B.
    C.D.
    【分析】设该店有客房x间,房客y人;根据“一房七客多七客,一房九客一房空”得出方程组即可.
    【解析】设该店有客房x间,房客y人;
    根据题意得:,
    故选:B.
    4.(2022•苏州)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x步才能追上,根据题意可列出的方程是( )
    A.x=100xB.x=100x
    C.x=100+xD.x=100﹣x
    【分析】设走路快的人要走x步才能追上,由走路快的人走x步所用时间内比走路慢的人多行100步,即可得出关于x的一元一次方程,此题得解.
    【解析】设走路快的人要走x步才能追上,则走路慢的人走60,
    依题意,得:60+100=x.
    故选:B.
    5.(2022•扬州)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”学了方程(组)后,我们可以非常顺捷地解决这个问题.如果设鸡有x只,兔有y只,那么可列方程组为( )
    A.B.
    C.D.
    【分析】关系式为:鸡的只数+兔的只数=35;2×鸡的只数+4×兔的只数=94,把相关数值代入即可求解.
    【解析】设鸡有x只,兔有y只,可列方程组为:

    故选:D.
    6.(2022•宿迁)如果x<y,那么下列不等式正确的是( )
    A.2x<2yB.﹣2x<﹣2yC.x﹣1>y﹣1D.x+1>y+1
    【分析】根据不等式的性质逐个判断即可.
    【解析】A、∵x<y,
    ∴2x<2y,故本选项符合题意;
    B、∵x<y,
    ∴﹣2x>﹣2y,故本选项不符合题意;
    C、∵x<y,
    ∴x﹣1<y﹣1,故本选项不符合题意;
    D、∵x<y,
    ∴x+1<y+1,故本选项不符合题意;
    故选:A.
    二.填空题(共11小题)
    7.(2022•徐州)若一元二次方程x2+x﹣c=0没有实数根,则c的取值范围是 c .
    【分析】根据判别式的意义得到=12+4c<0,然后解不等式即可.
    【解析】根据题意得Δ=12+4c<0,
    解得c.
    故答案为:c.
    8.(2022•盐城)分式方程1的解为 x=2 .
    【分析】先把分式方程转化为整式方程,再求解即可.
    【解析】方程的两边都乘以(2x﹣1),得x+1=2x﹣1,
    解得x=2.
    经检验,x=2是原方程的解.
    故答案为:x=2.
    9.(2022•泰州)方程x2﹣2x+m=0有两个相等的实数根,则m的值为 1 .
    【分析】由题可得Δ=(﹣2)2﹣4×1×m=0,即可得m的值.
    【解析】∵方程x2﹣2x+m=0有两个相等的实数根,
    ∴Δ=(﹣2)2﹣4×1×m=0,
    解得m=1.
    故答案为:1.
    10.(2022•泰州)已知a=2m2﹣mn,b=mn﹣2n2,c=m2﹣n2(m≠n),用“<”表示a、b、c的大小关系为 b<c<a .
    【分析】代数式的比较,常用的方法是作差法或者作商法,由于填空题不需要过程的特殊性,还可以考虑特殊值代入法.考虑到答案唯一,因此特殊值代入法最合适,也最简单.
    【解析】解法1:令m=1,n=0,
    则a=2,b=0,c=1.
    ∵0<1<2.
    ∴b<c<a.
    解法2:∵a﹣c=(2m2﹣mn)﹣(m2﹣n2)=(m﹣0.5n)2+0.75n2>0;
    ∴c<a;
    ∵c﹣b=(m2﹣n2)﹣(mn﹣2n2)=(m﹣0.5n)2+.075n2>0;
    ∴b<c;
    ∴b<c<a.
    11.(2022•无锡)二元一次方程组的解为 .
    【分析】根据代入消元法求解即可得出答案.
    【解析】,
    由②得:y=2x﹣1③,
    将③代入①得:3x+2(2x﹣1)=12,
    解得:x=2,
    将x=2代入③得:y=3,
    ∴原方程组的解为.
    故答案为:.
    12.(2022•宿迁)若关于x的一元二次方程x2﹣2x+k=0有实数根,则实数k的取值范围是 k≤1 .
    【分析】先计算根的判别式,根据一元二次方程解的情况得不等式,求解即可.
    【解析】∵Δ=(﹣2)2﹣4×1×k
    =4﹣4k.
    又∵关于x的一元二次方程x2﹣2x+k=0有实数根,
    ∴4﹣4k≥0.
    ∴k≤1.
    故答案为:k≤1.
    13.(2022•扬州)请填写一个常数,使得关于x的方程x2﹣2x+ 0(答案不唯一) =0有两个不相等的实数根.
    【分析】根据方程的系数结合根的判别式Δ=b2﹣4ac>0,即可得出关于c的不等式,解之即可求出c的值.
    【解析】a=1,b=﹣2.
    ∵Δ=b2﹣4ac=(﹣2)2﹣4×1×c>0,
    ∴c<1.
    故答案为:0(答案不唯一).
    14.(2022•连云港)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个解是x=1,则m+n的值是 1 .
    【分析】把x=1代入方程mx2+nx﹣1=0得到m+n﹣1=0,然后求得m+n的值即可.
    【解析】把x=1代入方程mx2+nx﹣1=0得m+n﹣1=0,
    解得m+n=1.
    故答案为:1.
    15.(2022•徐州)方程的解为 x=6 .
    【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    【解析】去分母得:3x﹣6=2x,
    解得:x=6,
    经检验x=6是分式方程的解.
    故答案为:x=6
    16.(2022•南通)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?若设人数为x,则可列方程为 5x+45=7x﹣3 .
    【分析】根据购买羊的总钱数不变得出方程即可.
    【解析】若设人数为x,则可列方程为:5x+45=7x﹣3.
    故答案为:5x+45=7x﹣3.
    17.(2022•镇江)已知关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,则m= 4 .
    【分析】根据一元二次方程根的判别式可得Δ=b2﹣4ac=(﹣4)2﹣4m=0,再求出m的值即可.
    【解析】∵关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,
    ∴Δ=b2﹣4ac=(﹣4)2﹣4m=0,
    解得:m=4.
    故答案为:4.
    三.解答题(共14小题)
    18.(2022•徐州)(1)解方程:x2﹣2x﹣1=0;
    (2)解不等式组:.
    【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;
    (2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
    【解析】(1)方程移项得:x2﹣2x=1,
    配方得:x2﹣2x+1=2,即(x﹣1)2=2,
    开方得:x﹣1=±,
    解得:x1=1,x2=1;
    (2),
    由①得:x≥1,
    由②得:x>2,
    则不等式组的解集为x>2.
    19.(2022•镇江)(1)解方程:1;
    (2)解不等式组:.
    【分析】(1)方程两边同时乘以(x﹣2),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解;
    (2)根据解不等式组的一般步骤,进行解答,即可得出答案.
    【解析】(1)去分母得:2=1+x+x﹣2,
    解得:x,
    检验:当x时,x﹣2≠0,
    ∴原分式方程的解为x;
    (2),
    解不等式①得:x>﹣1,
    解不等式②得:x≤3,
    ∴原不等式组的解集是﹣1<x≤3.
    20.(2022•盐城)解不等式组:.
    【分析】分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【解析】,
    解不等式①,得x≥1,
    解不等式②,得x<2,
    故原不等式组的解集为:1≤x<2.
    21.(2022•常州)解不等式组,并把解集在数轴上表示出来.
    【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
    【解析】由5x﹣10≤0,得:x≤2,
    由x+3>﹣2x,得:x>﹣1,
    则不等式组的解集为﹣1<x≤2,
    将不等式组的解集表示在数轴上如下:
    22.(2022•无锡)(1)解方程:x2﹣2x﹣5=0;
    (2)解不等式组:.
    【分析】(1)根据配方法可以解答此方程;
    (2)先解出每个不等式,然后即可得到不等式组的解集.
    【解析】(1)x2﹣2x﹣5=0,
    x2﹣2x=5,
    x2﹣2x+1=5+1,
    (x﹣1)2=6,
    ∴x﹣1=±,
    解得x1=1,x2=1;
    (2),
    解不等式①,得:x>1,
    解不等式②,得:x,
    ∴原不等式组的解集是1<x.
    23.(2022•苏州)解方程:1.
    【分析】先两边同乘以x(x+1)化为整式方程:x2+3(x+1)=x(x+1),解整式方程得x,再检验即可得答案.
    【解析】方程两边同乘以x(x+1)得:
    x2+3(x+1)=x(x+1),
    解整式方程得:x,
    经检验,x是原方程的解,
    ∴原方程的解为x.
    24.(2022•连云港)解不等式2x﹣1,并把它的解集在数轴上表示出来.
    【分析】去分母、移项、合并同类项可得其解集.
    【解析】去分母,得:4x﹣2>3x﹣1,
    移项,得:4x﹣3x>﹣1+2,
    合并同类项,得:x>1,
    将不等式解集表示在数轴上如下:

    25.(2022•宿迁)解方程:.
    【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可.
    【解析】1,
    2x=x﹣2+1,
    x=﹣1,
    经检验x=﹣1是原方程的解,
    则原方程的解是x=﹣1.
    26.(2022•连云港)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.
    【分析】设有x个人,物品的价格为y钱,由题意:每人出8钱,剩余3钱;每人出7钱,还缺4钱.列出二元一次方程组,解方程组即可.
    【解析】设有x个人,物品的价格为y钱,
    由题意得:,
    解得:,
    答:有7个人,物品的价格为53钱.
    27.(2022•扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?
    【分析】设每个小组有学生x名,由题意得:,解分式方程并检验后即可得出答案.
    【解析】设每个小组有学生x名,
    由题意得:,
    解得:x=10,
    当x=10时,12x≠0,
    ∴x=10是分式方程的根,
    答:每个小组有学生10名.
    28.(2022•扬州)解不等式组并求出它的所有整数解的和.
    【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可求得该不等式组所有整数解的和.
    【解析】,
    解不等式①,得:x≥﹣2,
    解不等式②,得:x<4,
    ∴原不等式组的解集是﹣2≤x<4,
    ∴该不等式组的整数解是﹣2,﹣1,0,1,2,3,
    ∵﹣2+(﹣1)+0+1+2+3=3,
    ∴该不等式组所有整数解的和是3.
    29.(2022•宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.
    (1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 300 元;乙超市的购物金额为 240 元;
    (2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?
    【分析】(1)利用总价=单价×数量,可求出购买30件这种文化用品所需原价,再结合两超市给出的优惠方案,即可求出在两家超市的购物金额;
    (2)设购买x件这种文化用品,当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为8x元,显然在乙超市支付的费用较少;当x>40时,在甲超市的购物金额为(6x+160)元,在乙超市的购物金额为8x元,分6x+160>8x,6x+160=8x及6x+160<8x三种情况,可求出x的取值范围或x的值,综上,即可得出结论.
    【解析】(1)∵10×30=300(元),300<400,
    ∴在甲超市的购物金额为300元,在乙超市的购物金额为300×0.8=240(元).
    故答案为:300;240.
    (2)设购买x件这种文化用品.
    当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为0.8×10x=8x(元),
    ∵10x>8x,
    ∴选择乙超市支付的费用较少;
    当x>40时,在甲超市的购物金额为400+0.6(10x﹣400)=(6x+160)(元),在乙超市的购物金额为0.8×10x=8x(元),
    若6x+160>8x,则x<80;
    若6x+160=8x,则x=80;
    若6x+160<8x,则x>80.
    综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.
    30.(2022•泰州)如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?
    【分析】要求路宽,就要设路宽应为x米,根据题意可知:矩形地面﹣所修路面积=草坪面积,利用平移更简单,依此列出等量关系解方程即可.
    【解析】设路宽应为x米
    根据等量关系列方程得:(50﹣2x)(38﹣2x)=1260,
    解得:x=4或40,
    40不合题意,舍去,
    所以x=4,
    答:道路的宽应为4米.
    31.(2022•徐州)《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?
    根据译文,解决下列问题:
    (1)设兽有x个,鸟有y只,可列方程组为 ;
    (2)求兽、鸟各有多少.
    【分析】(1)根据“兽与鸟共有76个头与46只脚”,即可得出关于x,y的二元一次方程组;
    (2)解方程组,即可得出结论.
    【解析】(1)∵兽与鸟共有76个头,
    ∴6x+4y=76;
    ∵兽与鸟共有46只脚,
    ∴4x+2y=46.
    ∴可列方程组为.
    故答案为:.
    (2)原方程组可化简为,
    由②可得y=23﹣2x③,
    将③代入①得3x+2(23﹣2x)=38,
    解得x=8,
    ∴y=23﹣2x=23﹣2×8=7.
    答:兽有8只,鸟有7只.

    相关试卷

    (江苏专用)中考数学真题分项汇编专题12概率(共17题)(2份,原卷版+解析版):

    这是一份(江苏专用)中考数学真题分项汇编专题12概率(共17题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题12概率共17题原卷版doc、江苏专用中考数学真题分项汇编专题12概率共17题解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    (江苏专用)中考数学真题分项汇编专题11统计(共27题)(2份,原卷版+解析版):

    这是一份(江苏专用)中考数学真题分项汇编专题11统计(共27题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题11统计共27题原卷版doc、江苏专用中考数学真题分项汇编专题11统计共27题解析版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    (江苏专用)中考数学真题分项汇编专题10圆(共35题)(2份,原卷版+解析版):

    这是一份(江苏专用)中考数学真题分项汇编专题10圆(共35题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题10圆共35题原卷版doc、江苏专用中考数学真题分项汇编专题10圆共35题解析版doc等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map