所属成套资源:(江苏专用)中考数学真题分项汇编专题 (2份,原卷版+解析版)
(江苏专用)中考数学真题分项汇编专题07几何初步与基本作图(共23题)(2份,原卷版+解析版)
展开
这是一份(江苏专用)中考数学真题分项汇编专题07几何初步与基本作图(共23题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题07几何初步与基本作图共23题原卷版doc、江苏专用中考数学真题分项汇编专题07几何初步与基本作图共23题解析版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
1.(2022·江苏徐州·中考真题)如图,已知骰子相对两面的点数之和为7,下列图形为该骰子表面展开图的是( )
A.B.C.D.
【答案】D
【分析】根据骰子表面展开后,其相对面的点数之和是7,逐项判断即可作答.
【详解】A项,2的对面是4,点数之和不为7,故A项错误;
B项,2的对面是6,点数之和不为7,故B项错误;
C项,2的对面是6,点数之和不为7,故C项错误;
D项,1的对面是6,2的对面是5,3的对面是4,相对面的点数之和都为7,故D项正确;
故选:D.
【点睛】本题主要考查了立体图形的侧面展开图的知识,解答时,找准相对面是解答本题的关键.没有共同边的两个面即为相对的面.
2.(2022·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图所示,则与的关系是( )
A.互余B.互补C.同位角D.同旁内角
【答案】A
【分析】利用平行线的性质可得出答案.
【详解】解:如图,过点作平行于,则,
,,
,
,
故选A.
【点睛】本题考查了平行线的性质,灵活运用性质解决问题是解题的关键.
3.(2022·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )
A.强B.富C.美D.高
【答案】D
【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,即可求解.
【详解】解:根据题意得: “盐”字所在面相对的面上的汉字是“高”,
故选D
【点睛】本题主要考查了正方体的平面展开图的特征,熟练掌握正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.
4.(2022·江苏常州·中考真题)下列图形中,为圆柱的侧面展开图的是( )
A.B.
C.D.
【答案】D
【分析】根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.
【详解】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,
得到其侧面展开图是对边平行且相等的四边形;
又有母线垂直于上下底面,故可得是矩形.
故选:D.
【点睛】本题考查的是圆柱的展开图,解题的关键是需要对圆柱有充分的理解;难度不大.
5.(2022·江苏泰州·中考真题)如图为一个几何体的表面展开图,则该几何体是( )
A.三棱锥B.四棱锥C.四棱柱D.圆锥
【答案】B
【分析】底面为四边形,侧面为三角形可以折叠成四棱锥.
【详解】解:由图可知,底面为四边形,侧面为三角形,
∴该几何体是四棱锥,
故选:B.
【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.
6.(2022·江苏苏州·中考真题)如图,直线AB与CD相交于点O,,,则的度数是( )
A.25°B.30°C.40°D.50°
【答案】D
【分析】根据对顶角相等可得,之后根据,即可求出.
【详解】解:由题可知,
,
.
故选:D.
【点睛】本题主要考查对顶角和角的和与差,掌握对顶角相等是解决问题的关键.
7.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是( )
A.B.
C.D.
【答案】C
【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.
【详解】解:根据正方体展开图特点可得C答案可以围成正方体,
故选:C.
【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.
8.(2022·江苏南通·中考真题)如图,,则的度数是( )
A.B.C.D.
【答案】C
【分析】根据平行线的性质和三角形外角的性质可得∠1+∠2=80°,结合,两式相加即可求出.
【详解】解:如图,∵,
∴∠4=∠1,
∴∠3=∠4+∠2=∠1+∠2=80°,
∵,
∴,
∴,
故选:C.
【点睛】本题考查了平行线的性质,三角形外角的性质,求出∠1+∠2=80°是解题的关键.
9.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )
A.垂线段最短
B.两点确定一条直线
C.过一点有且只有一条直线与已知直线垂直
D.过直线外一点有且只有一条直线与已知直线平行
【答案】A
【分析】根据垂线段最短解答即可.
【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,
故选:A.
【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.
10.(2022·江苏宿迁·中考真题)如图,AB∥ED,若∠1=70°,则∠2的度数是( )
A.70°B.80°C.100°D.110°
【答案】D
【分析】利用平行线的性质,对顶角的性质计算即可.
【详解】解:∵AB∥ED,
∴∠3+∠2=180°,
∵∠3=∠1,∠1=70°,
∴∠2=180°-∠3=180°-∠1=180°-70°=110°,
故选:D.
.
【点睛】本题考查的是平行线的性质,对顶角的性质,解题的关键熟练掌握平行线的性质,找到互补的两个角.
11.(2022·江苏无锡·中考真题)下列命题中,是真命题的有( )
①对角线相等且互相平分的四边形是矩形 ②对角线互相垂直的四边形是菱形
③四边相等的四边形是正方形 ④四边相等的四边形是菱形
A.①②B.①④C.②③D.③④
【答案】B
【分析】直接利用平行四边形以及矩形、菱形、正方形的判定方法分别分析进而得出答案.
【详解】解:①对角线相等且互相平分的四边形是矩形,正确;
②对角线互相平分且垂直的四边形是菱形,故原命题错误;
③四边相等的四边形是菱形,故原命题错误;
④四边相等的四边形是菱形,正确.
故选:B.
【点睛】此题主要考查了命题与定理,正确把握特殊四边形的判定方法是解题关键.
二、填空题
12.(2022·江苏连云港·中考真题)已知∠A的补角是60°,则_________.
【答案】120
【分析】如果两个角的和等于180°,就说这两个角互为补角.由此定义即可求解.
【详解】解:∵∠A的补角是60°,
∴∠A=180°-60°=120°,
故答案为:120.
【点睛】本题考查补角的定义,熟练掌握两个角互为补角的定义是解题的关键.
13.(2022·江苏镇江·中考真题)一副三角板如图放置,,,,则_________.
【答案】105
【分析】根据平行性的性质可得,根据三角形的外角的性质即可求解.
【详解】解:如图,
∵,
∴,
,,
,
,
故答案为:105.
【点睛】本题考查了平行线的性质,三角形外角的性质,直角三角形的两锐角互余,掌握以上知识是解题的关键.
14.(2022·江苏淮安·中考真题)如图,在中,,若,则的度数是______.
【答案】##40度
【分析】根据平行四边形对边平行可得,利用平行线的性质可得,因此利用直角三角形两个锐角互余求出即可.
【详解】解:∵四边形是平行四边形,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
故答案为:.
【点睛】本题考查平行四边形的性质,平行线的性质,三角形内角和定理,难度较小,解题的关键是能够综合运用上述知识.
15.(2022·江苏扬州·中考真题)将一副直角三角板如图放置,已知,,,则________°.
【答案】105
【分析】根据平行线的性质可得,根据三角形内角和定理以及对顶角相等即可求解.
【详解】,,
,
∵∠E=60°,
∴∠F=30°,
故答案为:105
【点睛】本题考查了平行线的性质,三角形内角和定理,掌握平行线的性质是解题的关键.
16.(2022·江苏无锡·中考真题)请写出命题“如果,那么”的逆命题:________.
【答案】如果,那么
【分析】根据逆命题的概念解答即可.
【详解】解:命题“如果,那么”的逆命题是“如果,那么”,
故答案为:如果,那么.
【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
17.(2022·江苏连云港·中考真题)如图,在中,.利用尺规在、上分别截取、,使;分别以、为圆心,大于的长为半径作弧,两弧在内交于点;作射线交于点.若,则的长为_________.
【答案】
【分析】如图所示,过点H作HM⊥BC于M,由作图方法可知,BH平分∠ABC,即可证明∠CBH=∠CHB,得到,从而求出HM,CM的长,进而求出BM的长,即可利用勾股定理求出BH的长.
【详解】解:如图所示,过点H作HM⊥BC于M,
由作图方法可知,BH平分∠ABC,
∴∠ABH=∠CBH,
∵四边形ABCD是平行四边形,
∴,
∴∠CHB=∠ABH,∠C=180°-∠ABC=30°,
∴∠CBH=∠CHB,
∴,
∴,
∴,
∴,
∴,
故答案为:.
【点睛】本题主要考查了角平分线的尺规作图,平行四边形的性质,含30度角的直角三角形的性质,勾股定理,等腰三角形的性质与判定等等,正确求出CH的长是解题的关键.
18.(2022·江苏苏州·中考真题)如图,在平行四边形ABCD中,,,,分别以A,C为圆心,大于的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF,则四边形AECF的周长为______.
【答案】10
【分析】根据作图可得,且平分,设与的交点为,证明四边形为菱形,根据平行线分线段成比例可得为的中线,然后勾股定理求得,根据直角三角形中斜边上的中线等于斜边的一半可得的长,进而根据菱形的性质即可求解.
【详解】解:如图,设与的交点为,
根据作图可得,且平分,
,
四边形是平行四边形,
,
,
又, ,
,
,
,
四边形是平行四边形,
垂直平分,
,
四边形是菱形,
,,
,
,
为的中点,
中, ,,
,
,
四边形AECF的周长为.
故答案为:.
【点睛】本题考查了垂直平分线的性质,菱形的性质与判定,勾股定理,平行线分线段成比例,平行四边形的性质与判定,综合运用以上知识是解题的关键.
三、解答题
19.(2022·江苏南通·中考真题)【阅读材料】
【解答问题】
请根据材料中的信息,证明四边形是菱形.
【答案】见解析
【分析】由作图可知AD=AB=BC,然后根据可得四边形ABCD是平行四边形,再由AD=AB可得结论.
【详解】解:由作图可知AD=AB=BC,
∵,即,
∴四边形ABCD是平行四边形,
又∵AD=AB,
∴平行四边形ABCD是菱形.
【点睛】本题考查了尺规作线段,平行四边形的判定,菱形的判定,熟练掌握相关判定定理是解题的关键.
20.(2022·江苏无锡·中考真题)如图,△ABC为锐角三角形.
(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且;(不写作法,保留作图痕迹)
(2)在(1)的条件下,若,,,则四边形ABCD的面积为 .(如需画草图,请使用试卷中的图2)
【答案】(1)见解析
(2)
【分析】(1)先作∠DAC=∠ACB,再利用垂直平分线的性质作,即可找出点D;
(2)由题意可知四边形ABCD是梯形,利用直角三角形的性质求出AE、BE、CE、AD的长,求出梯形的面积即可.
(1)
解:如图,
∴点D为所求点.
(2)
解:过点A作AE垂直于BC,垂足为E,
∵,,
∴,
∵,
∴,,
∴,
∵∠DAC=∠ACB,
∴,四边形ABCD是梯形,
∴,
∴四边形AECD是矩形,
∴,
∴四边形ABCD的面积为,
故答案为:.
【点睛】本题考查作图,作相等的角,根据垂直平分线的性质做垂线,根据直角三角形的性质及勾股定理求线段的长,正确作出图形是解答本题的关键.
21.(2022·江苏扬州·中考真题)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?
【初步尝试】如图1,已知扇形,请你用圆规和无刻度的直尺过圆心作一条直线,使扇形的面积被这条直线平分;
【问题联想】如图2,已知线段,请你用圆规和无刻度的直尺作一个以为斜边的等腰直角三角形;
【问题再解】如图3,已知扇形,请你用圆规和无刻度的直尺作一条以点为圆心的圆弧,使扇形的面积被这条圆弧平分.
(友情提醒:以上作图均不写作法,但需保留作图痕迹)
【答案】见解析
【分析】【初步尝试】如图1,作∠AOB的角平分线所在直线即为所求;
【问题联想】如图2,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;
【问题再解】如图3先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧即为所求.
【详解】【初步尝试】如图所示,作∠AOB的角平分线所在直线OP即为所求;
【问题联想】如图,先作MN的线段垂直平分线交MN于点O,再以O为圆心MO为半径作圆,与垂直平分线的交点即为等腰直角三角形的顶点;
【问题再解】如图,先作OB的线段垂直平分线交OB于点N,再以N为圆心NO为半径作圆, 与垂直平分线的交点为M,然后以O为圆心,OM为半径作圆与扇形所交的圆弧CD即为所求.
【点睛】本题考查了尺规作图,角平分线的性质,线段垂直平分线的性质,扇形的面积等知识,解决此类题目的关键是熟悉基本几何图形的性质,掌握基本作图方法.
22.(2022·江苏常州·中考真题)(现有若干张相同的半圆形纸片,点是圆心,直径的长是,是半圆弧上的一点(点与点、不重合),连接、.
(1)沿、剪下,则是______三角形(填“锐角”、“直角”或“钝角”);
(2)分别取半圆弧上的点、和直径上的点、.已知剪下的由这四个点顺次连接构成的四边形是一个边长为的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);
(3)经过数次探索,小明猜想,对于半圆弧上的任意一点,一定存在线段上的点、线段上的点和直径上的点、,使得由这四个点顺次连接构成的四边形是一个边长为的菱形.小明的猜想是否正确?请说明理由.
【答案】(1)直角
(2)见详解
(3)小明的猜想正确,理由见详解
【分析】(1)AB是圆的直径,根据圆周角定理可知∠ACB=90°,即可作答;
(2)以A为圆心,AO为半径画弧交⊙O于点E,再以E为圆心,EO为半径画弧交于⊙O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可;
(3)当点C靠近点A时,设,,可证,推出,分别以M,N为圆心,MN为半径作弧交AB于点P,Q,可得,进而可证四边形MNQP是菱形;当点C靠近点B时,同理可证.
【详解】(1)解:如图,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠ACB是直角,
即△ABC是直角三角形,
故答案为:直角;
(2)解:以A为圆心,AO为半径画弧交⊙O于点E,再以E为圆心,EO为半径画弧交于⊙O点F连接EF、FO、EA,G、H点分别与A、O点重合,即可,
作图如下:
由作图可知AE=EF=FH=HG=OA=AB=6,
即四边形EFHG是边长为6cm的菱形;
(3)解:小明的猜想正确,理由如下:
如图,当点C靠近点A时,设,,
∴ ,
∴ ,
∴ ,
∴ .
分别以M,N为圆心,MN为半径作弧交AB于点P,Q,作于点D,于点E,
∴ .
∵ ,,,
∴ ,
在和中,
,
∴ ,
∴ ,
∴ ,
又∵ ,
∴ 四边形MNQP是平行四边形,
又∵ ,
∴ 四边形MNQP是菱形;
同理,如图,当点C靠近点B时,采样相同方法可以得到四边形MNQP是菱形,
故小明的猜想正确.
【点睛】本题考查了圆周角定理、尺规作图、菱形的性质与判定等知识,解题的关键是理解题意,灵活运用上述知识解决问题.
23.(2022·江苏镇江·中考真题)操作探究题
(1)已知是半圆的直径,(是正整数,且不是3的倍数)是半圆的一个圆心角.
操作:如图1,分别将半圆的圆心角(取1、4、5、10)所对的弧三等分(要求:仅用圆规作图,不写作法,保留作图痕迹);
交流:当时,可以仅用圆规将半圆的圆心角所对的弧三等分吗?
探究:你认为当满足什么条件时,就可以仅用圆规将半圆的圆心角所对的弧三等分?说说你的理由.
(2)如图2,的圆周角.为了将这个圆的圆周14等分,请作出它的一条14等分弧(要求:仅用圆规作图,不写作法,保留作图痕迹).
【答案】(1)作图见解析;交流:,或;
探究:正整数(不是3的倍数),理由见解析
(2)作图见解析
【分析】(1)由操作可知,如果可以用与的线性表示,那么该圆弧就可以被三等分
(2)将圆周14等分就是把所对的圆周角所对弧三等分即可,给出一种算法:
(1)
操作:
交流:,或;
探究:设,解得(为非负整数).
或设,解得(为正整数).
所以对于正整数(不是3的倍数),都可以仅用圆规将半圆的圆心角所对的弧三等分;
(2)
【点睛】本题考查了用圆规作图的基本技能,需要准确理解题意,对于复杂图形的作图要学会将其转化成基本图形去作,本题第二问利用转化思想,转化为第一问的思路从而得以解决,这也是本题求解的关键.
老师的问题:
已知:如图,.
求作:菱形,使点C,D分别在上.
小明的作法:
(1)以A为圆心,长为半径画弧,交于点D;
(2)以B为圆心,长为半经画弧,交于点C;
(3)连接.
四边形就是所求作的菱形,
相关试卷
这是一份(江苏专用)中考数学真题分项汇编专题12概率(共17题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题12概率共17题原卷版doc、江苏专用中考数学真题分项汇编专题12概率共17题解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份(江苏专用)中考数学真题分项汇编专题11统计(共27题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题11统计共27题原卷版doc、江苏专用中考数学真题分项汇编专题11统计共27题解析版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
这是一份(江苏专用)中考数学真题分项汇编专题10圆(共35题)(2份,原卷版+解析版),文件包含江苏专用中考数学真题分项汇编专题10圆共35题原卷版doc、江苏专用中考数学真题分项汇编专题10圆共35题解析版doc等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。