所属成套资源:人教版数学八年级上册期末高分训练(原卷+解析)
人教版数学八上高分突破训练专项15 等边三角形常考作辅助线法(2份,原卷版+解析版)
展开
这是一份人教版数学八上高分突破训练专项15 等边三角形常考作辅助线法(2份,原卷版+解析版),文件包含人教版数学八上高分突破训练专项15等边三角形常考作辅助线法原卷版doc、人教版数学八上高分突破训练专项15等边三角形常考作辅助线法解析版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
技巧1:作平行线法
技巧2:截长补短法
【典例1】(烟台)如图,在等边三角形ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
【问题解决】
如图1,若点D在边BC上,求证:CE+CF=CD;
【类比探究】
如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.
【变式1-1】(2020秋•句容市期中)如图,在等边三角形ABC中,点E是边AC上一定点,点D是射线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
【问题解决】如图1,点D与点B重合,求证:AE=FC;
【类比探究】(1)如图2,点D在边BC上,求证:CE+CF=CD;
(2)如图3,点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系?直接写出你的结论.
【变式1-2】(天心区期中)如图,在等边△ABC中,点D是边AC上一定点,点E是直线BC上一动点,以DE为一边作等边△DEF,连接CF.
(1)如图1,若点E在边BC上,且DE⊥BC,垂足为E,求证:CD=2CE;
(2)如图1,若点E在边BC上,且DE⊥BC,垂足为E,求证:CE+CF=CD;
(3)如图2,若点E在射线CB上,请探究线段CE,CF与CD之间存在怎样的数量关系?并说明理由.
【典例2】(2020秋•湖南期末)如图,△ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD、DE.
(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC.
(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由.
(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.
【变式2-1】(道外区期末)如图,△ABC中,AB=AC,点D在AB边上,点E在AC的延长线上,且CE=BD,连接DE交BC于点F.
(1)求证:EF=DF;
(2)过点D作DG⊥BC,垂足为G,求证:BC=2FG.
【变式2-2】(东城区期末)(1)老师在课上给出了这样一道题目:如图1,等边△ABC边长为2,过AB边上一点P作PE⊥AC于E,Q为BC延长线上一点,且AP=CQ,连接PQ交AC于D,求DE的长.
小明同学经过认真思考后认为,可以通过过点P作平行线构造等边三角形的方法来解决这个问题.
请根据小明同学的思路直接写出DE的长.
(2)【类比探究】
老师引导同学继续研究:
1.等边△ABC边长为2,当P为BA的延长线上一点时,作PE⊥CA的延长线于点E,Q为边BC上一点,且AP=CQ,连接PQ交AC于D.请你在图2中补全图形并求DE的长.
2.已知等边△ABC,当P为AB的延长线上一点时,作PE⊥射线AC于点E,Q为 ② (①BC边上;②BC的延长线上;③CB的延长线上)一点,且AP=CQ,连接PQ交直线AC于点D,能使得DE的长度保持不变.(将答案的编号填在横线上)
1.(2021秋•咸丰县期末)如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE交CB于点P,点P为DE中点
(1)求证:CD=BE;
(2)若DE⊥AC,求BP的长.
2.(2021秋•绵竹市期末)在等边△ABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.
(1)如图1,若点E是AB的中点,求证:BD=AE;
(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数量关系,若成立,请给予证明.
3.(2020秋•旅顺口区期中)如图,在等边三角形ABC中,点E是边CA延长线上一点,点D是直线BC上一动点,以DE为一边作等边三角形DEF,连接CF.
(1)如图1,若点D在边BC上,求证:CE=CF+CD;
(2)如图2,若点D在边BC的延长线上,请探究线段CE,CF与CD之间存在怎样的数量关系,并说明理由.
4.(2020•安徽)如图,D是等边△ABC的边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于F,过D点作DG⊥AC于G点.证明下列结论:
(1)AG=AD;
(2)DF=EF;
(3)S△DGF=S△ADG+S△ECF.
5.(2020秋•花雨区校级月考)我们在前面曾遇到过这样一道题目:
小明与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”、“<”或“=”)
(2)一般情况,证明结论:如图2,过点E作EF∥BC,交AC于点F. 请你继续完成对以上问题(1)中所填写结论的证明.
(3)变式探究:如图3,△ABC是等边三角形,D是边BC上一点,点E在BA的延长线上,且BD=AE,此时,CE和DE有何数量关系?请画出图形,作出判断,并说明理
6.(2020秋•河西区期末)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)证明:在运动过程中,点D是线段PQ的中点;
(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
7.(2020秋•裕华区校级期末)知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.
如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.
(1)请直接写出AD长.(用x的代数式表示)
(2)当△ADE为直角三角形时,运动时间为几秒?
(3)求证:在运动过程中,点P始终为线段DE的中点.
8.(2021秋•营口期末)已知A(﹣10,0),以OA为边在第二象限作等边△AOB.
(1)求点B的横坐标;
(2)如下图,点M、N分别为OA、OB边上的动点,以MN为边在x轴上方作等边△MNE,连结OE,当∠EMO=45°时,求∠MEO的度数.
相关试卷
这是一份人教版数学八上高分突破训练专项17 幂运算(三大类型)(2份,原卷版+解析版),文件包含人教版数学八上高分突破训练专项17幂运算三大类型原卷版doc、人教版数学八上高分突破训练专项17幂运算三大类型解析版doc等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份人教版数学八上高分突破训练专项16 轴对称之将军饮马模型(2份,原卷版+解析版),文件包含人教版数学八上高分突破训练专项16轴对称之将军饮马模型原卷版doc、人教版数学八上高分突破训练专项16轴对称之将军饮马模型解析版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
这是一份人教版数学八上高分突破训练专项08 对角互补模型综合应用(2份,原卷版+解析版),文件包含人教版数学八上高分突破训练专项08对角互补模型综合应用原卷版doc、人教版数学八上高分突破训练专项08对角互补模型综合应用解析版doc等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。