陕西省西安国际港务区铁一中陆港初级中学2023-2024学年九年级上学期月考数学试题(原卷版)-A4
展开
这是一份陕西省西安国际港务区铁一中陆港初级中学2023-2024学年九年级上学期月考数学试题(原卷版)-A4,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
(时间:110分钟 总分:120分)
一、选择题(共8小题,每小题3分,计24分)
1. 若是一元二次方程的根,则( )
A. B. C. 4D. 2
2. 如图所示的几何体的俯视图是( )
A. B.
C. D.
3. 在中,,,,则的值为( )
A. 5B. 6C. 7D. 8
4. 如图,在平面直角坐标系中,已知,与位似,原点O是位似中心,且,则点E的坐标是( )
A. B. C. D.
5. 如图,菱形中,对角线、交于点O,菱形周长为24,点P是边的中点,则线段的长为( )
A. 3B. 4C. 5D. 8
6. 如图为二次函数图象,那么关于x的方程的根的情况是( )
A. 无实数根B. 有两个相等实数根
C. 有两个异号实数根D. 有两个不相等实数根
7. 如图在中,弦相交于点P.若,,则的度数为( )
A. B. C. D.
8. 已知二次函数自变量x的部分取值和对应的函数值y如下表:
下列说法中正确的是( )
A. 函数图像开口向下B. 函数图像与x轴交点坐标是
C. 当时,y随x的增大而增大D. 顶点坐标是
二、填空题(共5小题,每小题3分,计15分)
9. 若==(b+d0),则=____.
10. 如图,AB是⊙O的弦,OC⊥AB于点C,如果 AB=8,OC=3,那么⊙O的半径等于_________.
11. 如图所示的小孔成像实验中,若物距为,像距为,蜡烛火焰倒立的像的高度是,则蜡烛火焰的高度是______cm.
12. 如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,轴,已知点A,B的横坐标分别为2,4,与的面积之差为1,则k的值为______.
13. 如图,中,,,,D为内一动点,为的外接圆,交于点E,直线交于点P,,则的最小值为______.
三、解答题(共12小题,计81分)
14. 计算:;
15. 解不等式组:;
16. 解方程:.
17. 先化简,再求值:,其中.
18. 如图,在中,,,垂足为D.
(1)切线的性质:圆的切线 过切点的半径(填汉字);
(2)尺规作图:求作,使得经过B,D两点,并与边相切于点C.(保留作图痕迹,不写作法)
19. 小明和小亮用如图所示的A、B两个转盘(每个转盘被分成三个面积相等的扇形)做游戏,转动两个转盘各一次,若两次数字之积超过6,则小明胜;若两次数字之积小于5,则小亮胜(若指针指向扇形的分界线,则需要重新转动),则这个游戏对双方公平吗?通过树状图或列表的方式说明理由.
20. 如图,菱形的对角线,交于点O,F是的中点,过点B作交的延长线于点E,连接,猜想四边形的形状,并进行证明.
21. 如图所示,实习期间小田接到任务测量塔的高度,但是无法直接测量.于是他先在塔附近的空地C处地面上水平放置了一个平面镜,然后他沿着方向移动,当移动到点E时,他刚好在平面镜内看到这座塔的顶端A的像,此时,测得顶端A的仰角为40°,米,小田同学眼睛与地面的距离米,已知点B,C,E在同一水平线上,且,均垂直于,若平面镜的厚度忽略不计,则这座塔的高度约为多少米.(参考数据:,,)(结果精确到0.1米)
22. 如图,矩形的四个顶点都在的边上,于点D,交于点N.
(1)求证:;
(2)若,,设的长度为x,矩形的面积为y,则矩形的面积是否有最大值?如果有,请求出矩形面积的最大值:如果没有,请说明理由.
23. 如图,在中,,平分交于点E,点D在上,,是的外接圆,交于点F.
(1)求证:是的切线;
(2)若的半径为4,,求的长.
24. 如图,抛物线:与x轴交于点和点,与y轴交于点C.
(1)求抛物线表达式及顶点D的坐标;
(2)如图1,点P为直线上方抛物线上一个动点,设点P的横坐标m.当m为何值时,的面积最大?并求出这个面积的最大值.
(3)在图2中,将抛物线关于x轴对称,得到新的抛物线:,新的抛物线与y轴交于点E,点M是y轴上一点,点N是平面内一点,是否存在点M,N,使以点B,E,M,N为顶点的四边形为菱形,若存在,请直接写出点N的坐标:若不存在,请说明理由.
25. 问题提出:
(1)如图1,在中,,,则当边上高为 时,的面积最大;
问题探究:
(2)如图2,在直角三角形中,,,,点D、E分别为、边上的动点,且,连接、,交于点P,
①求证:;
②求的度数及面积的最大值.
问题解决:
(3)如图3,为进一步落实“双减”,让学生在课间十分钟动起来,我校将在一片空地上建如图所示的四边形活动场地(即四边形).其中,C、D分别为场地的入口和出口,米,,,且.已知建设成本为每平方米10元,求建设满足要求的场地,最多需要投入多少元?
x
…
0
1
2
…
y
…
5
0
…
相关试卷
这是一份2024年陕西省西安国际港务区铁一中陆港初级中学中考四模数学试题(原卷版+解析版),文件包含2024年陕西省西安国际港务区铁一中陆港初级中学中考四模数学试题原卷版docx、2024年陕西省西安国际港务区铁一中陆港初级中学中考四模数学试题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份2024年陕西省西安国际港务区铁一中陆港初级中学中考四模数学试题(无答案),共7页。试卷主要包含了8的立方根是,如图,一次函数与的图象交于点等内容,欢迎下载使用。
这是一份2024年陕西省西安国际港务区铁一中陆港初级中学中考四模数学试题(原卷版+解析版),文件包含2024年陕西省西安国际港务区铁一中陆港初级中学中考四模数学试题原卷版docx、2024年陕西省西安国际港务区铁一中陆港初级中学中考四模数学试题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。