所属成套资源:河北省各地区2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
河北省易县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省易县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下面四幅作品分别代表二十四节气中的“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )
A. B.
C. D.
2. 下列计算正确的是( ).
A. B. C. D.
3. 熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为( )
A. B. C. D.
4. 一副三角板按如图所示叠放在一起,则图中的度数为( )
A. B. C. D.
5. 将多项式进行因式分解的结果是( )
A. B. C. D.
6. 数学兴趣小组开展活动:把多项式分解因式,组长小明发现小组里有以下四种结果与自己的结果不同,他认真思考后,发现其中还有一种结果是正确的,你认为正确的是( )
A. B. C. D.
7. 如图,已知△ABC是等腰三角形,,平分,若,则的长为( )
A. 2B. 3C. 4D. 8
8. 如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60°B. 50°C. 40°D. 30°
9. 如图,△ABC中,,,,则△ABC的周长为( )
A. 9B. 8C. 6D. 12
10. 如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为( )
A. 40°B. 50°C. 80°D. 100°
11. 如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )
A. 2560B. 490C. 70D. 49
12. 若,,则的值为( )
A. 4B. -4C. D.
13. 在ΔABC中给定下面几组条件:
①∠ACB=30°,BC=4cm,AC=5cm ②∠ABC=30°,BC=4cm,AC=3cm
③∠ABC=90°,BC=4cm,AC=5cm ④∠ABC=120°,BC=4cm,AC=5cm
若根据每组条件画图,则ΔABC不能够唯一确定的是( )
A. ①B. ②C. ③D. ④
14. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
15. 如图,把长方形纸片纸沿对角线折叠,设重叠部分为△,那么,下列说法错误的是( )
A. △是等腰三角形,
B. 折叠后∠ABE和∠CBD一定相等
C. 折叠后得到的图形是轴对称图形
D. △EBA和△EDC一定是全等三角形
16. 如图,在中,,,点,分别是,上的动点,将沿直线翻折,点的对点恰好落在边上,若是等腰三角形,那么的度数为( )
A. 或B. 或
C. ,或D. ,或
二.填空题(本大题共3题,总计 12分)
17. 计算:________.
18. 已知a和b两个有理数,规定一种新运算“*”为:a*b=(其中a+b≠0),若m*=﹣,则m=______.
19. 如图,点P关于OA、OB的对称点分别是H、G,线段HG交OP于点C,∠AOB=30°,OP=10,则HG=_____.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. (1)计算:;
(2)分解因式:;
21. 先化简,再求值: ,请你选取一个使原分式有意义的a的值代入求值.
22. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出△ABC关于轴对称的.
(2)写出点的坐标(直接写答案).
(3)的面积为___________
23. 如图,AD平分∠BAC,∠EAD=∠EDA,∠B=54°.
(1)求∠EAC的度数;
(2)若∠CAD:∠E=2:5;求∠E的度数.
24. (1)若,求的值;
(2)请直接写出下列问题的答案:
①若,则___________;
②若,则__________.
25. 在今年新冠肺炎防疫工作中,某公司购买了、两种不同型号口罩,已知型口罩的单价比型口罩的单价多1.5元,且用8000元购买型口罩的数量与用5000元购买型口罩的数量相同.
(1)、两种型号口罩的单价各是多少元?
(2)根据疫情发展情况,该公司还需要增加购买一些口罩,增加购买型口罩数量是型口罩数量的2倍,若总费用不超过3800元,则增加购买型口罩的数量最多是多少个?
26. 如图,已知△ABC和△ADE均为等腰三角形,,,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.
(1)如图1,若,求证:;
(2)在(1)的条件下,求的度数;
拓广探索:
(3)如图2,若,,CF为中BE边上的高,请直接写出的度数和EF的长度.
易县2024-2025学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:D
【解析】:解:A、不是轴对称图形,本选项不符合题意;
B、不是轴对称图形,本选项不符合题意;
C、不是轴对称图形,本选项不符合题意;
D、是轴对称图形,本选项符合题意.
故选:D.
2.【答案】:C
【解析】:解:A.与不是同类项,不能进行加法运算,故该选项错误,不符合题意;
B.,故该选项错误,不符合题意;
C.,故该选项正确,符合题意;
D.,故该选项错误,不符合题意;
故选:C.
3.【答案】:C
【解析】:解:0.000156用科学记数法可表示为1.56×10﹣4.
故选:C.
4.【答案】:B
【解析】:如图所示:
由题意得,∠ABD=60°,∠C=45°,
∴∠α=∠ABD−∠C=15°,故B正确.
故选:B.
【画龙点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
5.【答案】:C
【解析】:解:
故选:C.
6.【答案】:D
【解析】:解:
故选:D.
7.【答案】:B
【解析】:解:在△ABC是等腰三角形,,平分,
由三线合一性质得:
故选:B.
8.【答案】:C
【解析】:解:∵FE⊥DB,
∵∠DEF=90°,
∵∠1=50°,
∴∠D=90°﹣50°=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.
9.【答案】:D
【解析】:解:在△ABC中,
, ,
,
,
∴△ABC为等边三角形,
,
∴△ABC的周长为:,
故答案为:D.
10.【答案】:C
【解析】:∵线段AB的垂直平分线交AB于D,交AC于E,
∴AE=BE,
∴∠ABE=∠A=40°,
∵∠BEC=∠A+∠ABE
∴∠BEC=40°+40°=80°.
故选:C.
11.【答案】:B
【解析】:解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,
∴ab=10,a+b=7,
∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.
故选:B.
12.【答案】:A
【解析】:因为,
所以,
因为,
所以,
联立方程组可得:
解方程组可得,
所以,
故选A.
13.【答案】:B
【解析】:解:①BC=4cm,AC=5cm,∠ACB=30°,满足“SAS”,所以根据这组条件画图,△ABC唯一;
②BC=4cm,AC=3cm,∠ABC=30°,根据这组条件画图,△ABC可能为锐角三角形,也可为钝角三角形;
③BC=4cm,AC=5cm,∠ABC=90°;满足“HL”,所以根据这组条件画图,△ABC唯一;
④BC=4cm,AC=5cm,∠ABC=120°,根据这组条件画图,△ABC唯一.
所以,ΔABC不能够唯一确定的是②.
故选:B
14.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
15.【答案】:B
【解析】:∵四边形ABCD为长方形
∴∠BAE=∠DCE=90°,AB=CD,
在△EBA和△EDC中,
∵∠AEB=∠CED,∠BAE=∠DCE, AB=CD,
∴△EBA≌△EDC (AAS),
∴BE=DE,
∴△EBD为等腰三角形,
∴折叠后得到的图形是轴对称图形,
故A、C、D正确,
无法判断∠ABE和∠CBD是否相等,B选项错误;
故选B.
16.【答案】:D
【解析】:,,
,
分三种情况讨论:
①当时,如图:
,
;
②当时,如图:
,
;
③当时,如图:
,
;
综上所述,为或或,
故选:D.
二. 填空题
17.【答案】: 0.5
【解析】:解:原式
.
故答案为:0.5.
18.【答案】:
【解析】:解:已知等式利用题中的新定义化简得: ,即
整理得:3(2m+3)=﹣5(2m﹣3),
去括号得:6m+9=﹣10m+15,
移项合并得:16m=6,
解得: ,
检验当时, ,
∴是分式方程的解,
则.
故答案为:.
19.【答案】: 10
【解析】:解:连接OH,OG.
∵点P关于OA、OB的对称点分别是H、G,
∴OP=OH,OP=OG,∠AOP=∠AOH,∠POB=∠BOG,
∵∠AOB=30°,
∴∠AOP+∠BOP=30°,
∴∠HOG=2∠AOP+2∠BOP=60°,
∴△OGH是等边三角形,
∴GH=OH=OP=10,
故答案为10.
三.解答题
20【答案】:
(1);
(2)
【解析】:
(1)原式
;
(2)原式
.
【画龙点睛】本题主要考查整式的化简以及因式分解,掌握运算法则和用公式法因式分解是解题的关键.
21【答案】:
-2
【解析】:
,
=,
=,
=,
当a=2时,原式==-2
22【答案】:
(1)见解析;(2)A1(-1,2)、B1(-3,1)、C1(2,-1);(3)
【解析】:
解:(1)如图所示,△A1B1C1即为所求.
(2)由图知,A1(-1,2)、B1(-3,1)、C1(2,-1);
(3)△A1B1C1的面积=
23【答案】:
(1)∠EAC=54°;
(2).
【解析】:
【小问1详解】
∵∠EAD=∠EDA,
∴∠EAC+∠CAD=∠B+∠BAD,
∵AD平分∠BAC,
∴∠CAD=∠BAD.
∴∠EAC=∠B.
∵∠B=54°,
∴∠EAC=54°.
【小问2详解】
设∠CAD=2x,则∠E=5x,∠DAB=2x,
∵∠B=54°,
∴∠EDA=∠EAD=2x+54°.
∵∠EDA+∠EAD+∠E=180°,
∴2x+54°+2x+54°+5x=180°.
解得x=8°.
∴∠E=5x=40°.
24【答案】:
(1)12;(2)①;②17
【解析】:
(1)∵,
∴,
∴;
(2)①∵,
∴=,
∴;
故答案为:;
②设a=4-x,b=5-x,
∵a-b=4-x-(5-x)=-1,
∴,
∴,
∵ab=,
∴,
∴,
故答案为:17.
25【答案】:
(1)型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)增加购买型口罩的数量最多是422个
【解析】:
(1)设型口罩单价为元/个,则型口罩单价为元/个,
根据题意,得:,解方程,得,
经检验:是原方程的根,且符合题意,∴(元),
答:型口罩单价为4元/个,型口罩单价为2.5元/个;
(2)设增加购买型口罩的数量是个,则增加购买型口罩数量是2个,
根据题意,得:,
解不等式,得:,
∵为正整数,∴正整数的最大值为422,
答:增加购买型口罩的数量最多是422个.
【画龙点睛】本题考查了分式方程和不等式的应用,属于常考题型,正确理解题意、找准相等与不等关系是解题的关键.
26【答案】:
(1)证明见解析
(2)∠BEC=80°
(3)∠BEC=120°,EF=2
【解析】:
【小问1详解】
证明:如图1中,
∵∠ABC=∠ACB=∠ADE=∠AED,
∴∠EAD=∠CAB,
∴∠EAC=∠DAB,
∵AE=AD,AC=AB,
在△BAD和△CAE中,
∵,
∴.
【小问2详解】
解:如图1中,设AC交BE于O.
∵∠ABC=∠ACB=50°,
∴∠BAC=180°﹣110°=80°,
∵,
∴∠ABO=∠ECO,
∵∠EOC=∠AOB,
∴∠CEO=∠BAO=80°,
即∠BEC=80°.
【小问3详解】
解:如图2中,
∵∠CAB=∠EAD=120°,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴,
∴∠BAD=∠ACE,EC=BD=4,
由(2)同理可证∠BEC=∠BAC=120°,
∴∠FEC=60°,
∵CF为中BE边上的高,,
∴∠F=90°,
∴∠FCE=30°,
∴EF=EC=2.
【画龙点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
相关试卷
这是一份河北省涉县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共25页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省安国市2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共19页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省威县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。