终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    河北省雄县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)

    立即下载
    加入资料篮
    河北省雄县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)第1页
    河北省雄县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)第2页
    河北省雄县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省雄县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解)

    展开

    这是一份河北省雄县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共20页。试卷主要包含了选择题等内容,欢迎下载使用。
    1. 下列图案中,是轴对称图形的是( )
    A. B. C. D.
    2. 下列运算正确的是( )
    A. B. C. D.
    3. 华为手机使用了自主研发的海思麒麟芯片,目前最新的型号是麒麟990.芯片是由很多晶体管组成的,而芯片技术追求是体积更小的晶体管,以便获得更小的芯片和更低的电力功耗,而麒麟990的晶体管栅极的宽度达到了毫米,将数据用科学记数法表示为( )
    A. B. C. D.
    4. 对于①,②,从左到右的变形,表述正确的是( )
    A. 都因式分解B. 都是乘法运算
    C. ①因式分解,②是乘法运算D. ①是乘法运算,②是因式分解
    5. 一个正多边形,它的一个内角恰好是一个外角的5倍,则这个正多边形的边数是( )
    A. 十二B. 十一C. 十D. 九
    6. 如图,下列条件中,不能证明△ABC≌△DCB的是( )
    A. AB=DC,AC=DBB. AB=DC,∠ABC=∠DCB
    C. BO=CO,∠A=∠DD. AB=DC,∠DBC=∠ACB
    7. 下列长度的三条线段,能组成三角形的是( )
    A. 3,5,6B. 3,2,1C. 2,2,4D. 3,6,10
    8. 如图,在 ABC 中,ED / / BC ,ABC 和 ACB 的平分线分别交 ED 于点 G 、F ,若 FG  2 ,ED  6 ,则EB  DC 的值为( )
    A. 6B. 7
    C. 8D. 9
    9. 点在的角平分线上,点到边的距离等于,点是边上的任意一点,则下列选项正确的是( )
    A. B. C. D.
    10. 若,,则的值为( )
    A. 4B. -4C. D.
    11. 如果关于x的方程无解,则m的值是( )
    A. 2B. 0C. 1D. –2
    12. 如图,已知在△ABC中,,,嘉淇通过尺规作图得到,交于点D,根据其作图痕迹,可得的度数为( )
    A. 120°B. 110°C. 100°D. 98°
    13. 若是完全平方式,则m的值为( )
    A. 3B. C. 7D. 或7
    14. 为半径画弧,交O′A′于点C′;
    (3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;
    (4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.
    小聪作法正确的理由是( )
    A. 由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
    B. 由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
    C. 由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
    D. 由“等边对等角”可得∠A′O′B′=∠AOB
    15. 如图,直线m是△ABC中BC边的垂直平分线,点P是直线m上一动点,若AB=7,AC=6,BC=8,则△APC周长的最小值是( )
    A. 13B. 14C. 15D. 13.5
    16. 如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )

    A. 1个B. 2个C. 3个D. 4个
    二.填空题(本大题共3题,总计 12分)
    17. 若,则可表示为________(用含a、b的代数式表示).
    18. 如图,△ABC中,是的垂直平分线,AE=3cm, △ABD的周长为,则的周长为______.
    19. 如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为_______.
    三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
    20. (1)计算:;
    (2)分解因式:;
    21. 先化简,再求值:,其中.
    22. 如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).
    (1)作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;
    (2)在x轴上找一点P,使得PB+PA的值最小.(不要求写作法)
    23. 如图,在△ABC中,,D是的中点,垂直平分,交于点E,交于点F,M是直线上的动点.
    (1)当时.
    ①若,则点到的距离为________
    ②若,,求的周长;
    (2)若,且△ABC的面积为40,则的周长的最小值为________.
    24. 计算:
    (1)已知,求的值;
    (2)已知实数m、n满足m2﹣10mn+26n2+4n+4=0,求mn的值.
    25. 甘蔗富含铁、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一.为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了,所购进甘蔗的数量比第一次少了.
    (1)该商家第一次购进云南甘蔗的进价是每千克多少元?
    (2)假设商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?
    26. 已知M是等边△ABC的边BC上的点.
    (1)如图①,过点M作MN∥CA,交AB于点N,求证:BM = BN;
    (2)如图②,连接AM,过点M作∠AMH = 60°,MH与∠ACB的邻补角的平分线交于点H,过点H作HD⊥BC,交BC延长线于点D.
    (ⅰ)求证:MA = MH;
    (ⅱ)直接写出CB,CM,CD之间的数量关系式.
    雄县2024-2025学年八年级(上)数学期末模拟测试
    参考答案及解析
    一.选择题
    1.【答案】:C
    【解析】:A选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
    B选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
    C选项轴对称图形,符合题意.
    D选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
    2.【答案】:C
    【解析】:解:A选项,,故选项错误;
    B选项,,故选项错误;
    C选项,,故选项正确;
    D选项,,故选项错误.
    故选:C.
    3.【答案】:B
    【解析】:解:=7×10-9.
    故选:B.
    4.【答案】:C
    【解析】:①左边多项式,右边整式乘积形式,属于因式分解;
    ②左边整式乘积,右边多项式,属于整式乘法;
    故答案选C.
    5.【答案】:A
    【解析】:解:一个正多边形,它的一个内角恰好是一个外角的5倍,且一个内角与一个外角的和为,
    这个正多边形的每个外角都相等,且外角的度数为,
    这个正多边形的边数为,
    故选:A.
    6.【答案】:D
    【解析】:A.由“SSS”可以判定△ABC≌△DCB,故本选项错误;
    B.由“SAS”可以判定△ABC≌△DCB,故本选项错误;
    C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;
    D.由“SSA”不能判定△ABC≌△DCB,故本选项正确.
    故选D.
    7.【答案】:A
    【解析】:A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,
    B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,
    C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,
    D. ∵3+6<10,∴长度为3,6,10三条线段不能组成三角形,故该选项不符合题意,
    故选A
    8.【答案】:C
    【解析】:∵ED∥BC,
    ∴∠EGB=∠GBC,∠DFC=∠FCB,
    ∵∠GBC=∠GBE,∠FCB=∠FCD,
    ∴∠EGB=∠EBG,∠DCF=∠DFC,
    ∴BE=EG,CD=DF,
    ∵FG=2,ED=6,
    ∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,
    故选C.
    9.【答案】:B
    【解析】:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,
    ∴点P到OB的距离为5,
    ∵点Q是OB边上的任意一点,
    ∴PQ≥5.
    故选:B.
    10.【答案】:A
    【解析】:因为,
    所以,
    因为,
    所以,
    联立方程组可得:
    解方程组可得,
    所以,
    故选A.
    11.【答案】:A
    【解析】:解:方程去分母得:m+1﹣x=0,
    解得x=m+1,
    当分式方程分母为0,即x=3时,方程无解,
    则m+1=3,
    解得m=2.
    故选A.
    12.【答案】:B
    【解析】:根据作图痕迹可知,是∠ABC的平分线,
    ∵,,

    ∵是∠ABC的平分线,


    故选:B.
    13.【答案】:D
    【解析】:∵关于x的二次三项式是一个完全平方式,
    ∴m-2=±1×5,
    ∴m=7或-3,故D正确.
    故选:D.
    【画龙点睛】本题主要考查了完全平方公式的应用,解答此题的关键是要明确:.
    14.【答案】:A
    【解析】:解:由作图得OD=OC=OD′=OC′,CD=C′D′,
    则根据“SSS”可判断△C′O′D′≌△COD.
    故选:A.
    15.【答案】:A
    【解析】:∵直线m是△ABC中BC边的垂直平分线,
    ∴BP=PC
    ∴△APC周长=AC+AP+PC=AC+AP+BP
    ∵两点之间线段最短,
    ∴AP+BP≥AB
    ∴△APC的周长=AC+AP+BP≥AC+AB
    ∵AC=6,AB=7
    ∴△APC周长最小为AC+AB=13
    故选:A.
    16.【答案】:C
    【解析】:要使△ABP与△ABC全等,
    必须使点P到AB的距离等于点C到AB的距离,
    即3个单位长度,
    所以点P的位置可以是P1,P2,P4三个,
    故选C.
    二. 填空题
    17.【答案】: .
    【解析】:∵,
    ∴====.
    故答案为:.
    18.【答案】: 19cm
    【解析】:解:∵是的垂直平分线,
    ∴cm,,
    ∴AC=AE+CE=6(cm),
    ∵的周长为,
    ∴(cm),
    ∴(cm),即(cm),
    ∴(cm);
    ∴△ABC的周长为19cm;
    故答案为:19cm.
    19.【答案】: 10
    【解析】:解:如图,连接,
    是等腰三角形,点是边的中点,


    解得,
    是线段的垂直平分线,
    点关于直线的对称点为点,
    的长为的最小值,
    周长的最小值.
    故答案为:10.
    三.解答题
    20【答案】:
    (1);
    (2)
    【解析】:
    (1)原式

    (2)原式

    【画龙点睛】本题主要考查整式的化简以及因式分解,掌握运算法则和用公式法因式分解是解题的关键.
    21【答案】:

    【解析】:
    原式


    当时,
    22【答案】:
    (1)如图,△A'B'C'即所求作.见解析;(2)如图,点P即为所求作,见解析.
    【解析】:
    (1)如图,△A'B'C'即为所求作.
    (2)如图,点P即为所求作.
    23【答案】:
    (1)①1;②18
    (2)14
    【解析】:
    【小问1详解】
    ①解:如图1,作于
    ∵,D是BC的中点
    ∴是的垂直平分线
    ∴,


    ∵,

    在△NBM和△ECM中



    故答案为:1.
    ②解:∵D是的中点,,
    ∴是的垂直平分线,
    ∴,
    ∴,
    ∴是等边三角形,

    ∴的周长为
    故答案为:18.
    【小问2详解】
    解:如图2,连接
    ∵ ,
    解得
    ∵垂直平分
    ∴关于直线的对称点为
    ∴由两点之间线段最短可知与直线的交点即为
    ∴的周长的最小值为
    ∴的周长的最小值为14.
    24【答案】:
    (1)±1; (2)
    【解析】:
    【小问1详解】
    解:∵,
    ∴,
    ∴,
    即,
    解得,
    ∴的值为;
    【小问2详解】
    解:∵m2﹣10mn+26n2+4n+4=0,
    ∴m2﹣10mn+25n2+n2+4n+4=0,
    ∴(m﹣5n)2+(n+2)2=0,
    ∴m﹣5n=0,n+2=0,
    ∴n=﹣2,m=﹣10,
    ∴mn=,
    ∴mn的值为.
    【画龙点睛】本题主要考查利用完全平方和、完全平方差公式求代数式的值,需要熟练掌握及其变形.
    25【答案】:
    (1)2元;(2)4元.
    【解析】:
    (1)设该商家第一次购买云南甘蔗的进价是每千克元,
    根据题意可知:,

    经检验,是原方程的解,
    答:该商家第一次购买云南甘蔗的进价是每千克2元;
    (2)设每千克的售价为元,
    第一次销售了千克,第二次销售了250千克,
    根据题意可知:

    解得:,
    答:每千克的售价至少为4元.
    【画龙点睛】本题考查分式方程的应用,解题的关键是正确找出题中的等量关系.
    26【答案】:
    (1)见解析 (2)(ⅰ)见解析;(ⅱ)BC  CM  2CD
    【解析】:
    ∴△AMN≌△MHC(ASA),
    ∴MA=MH;
    (ⅱ)CB=CM+2CD;理由如下:
    证明:如图2,过M点作MG⊥AB于G,
    ∵△AMN≌△MHC,
    ∴MN=HC,
    ∵△BMN为等边三角形,MG⊥AB
    ∴MN=MB,BM=2BG,
    ∴HC=BM,
    △BMG和△CHD中
    &∠B=∠HCD&∠MGB=∠HDC&HC=MB,
    ∴△BMG≌△CHD(AAS),
    ∴CD=BG,
    ∴BM=2CD,
    所以BC=MC+2CD.
    【画龙点睛】此题主要考查了等边三角形的性质,以及全等三角形的判定与性质,关键是正确作出辅助线,熟练掌握证明三角形全等的方法.

    相关试卷

    河北省赵县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解):

    这是一份河北省赵县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。

    河北省蠡县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解):

    这是一份河北省蠡县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共26页。试卷主要包含了选择题等内容,欢迎下载使用。

    河北省磁县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解):

    这是一份河北省磁县2024-2025学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map