河北省怀来县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省怀来县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共22页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图形中,是轴对称图形的是( )
A. B. C. D.
2. 下列运算正确的是( )
①;②;③;④;⑤
A. ①⑤B. ①④⑤C. ②④⑤D. ②③⑤
3. 刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是( )
A. 6cm的木条B. 8cm的木条C. 两根都可以D. 两根都不行
4. 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )
A. 7cmB. 3cmC. 9cmD. 5cm
5. 下列长度的三条线段,能组成三角形的是( )
A. 3,5,6B. 3,2,1C. 2,2,4D. 3,6,10
6. 若(x+m)(x﹣8)中不含x的一次项,则m的值为( )
A. 8B. ﹣8C. 0D. 8或﹣8
7. 如图,已知△ABC是等腰三角形,,平分,若,则的长为( )
A. 2B. 3C. 4D. 8
8. 练习中,小亮同学做了如下4道因式分解题,你认为小亮做得正确的有
① ②
③ ④
A. 1个B. 2个C. 3个D. 4个
9. 如图,在ΔABC中,DE是AC的垂直平分线,AE=3cm,ΔABD的周长为13cm,则ΔABC的周长是( )
A. 13cmB. 16cmC. 19cmD. 22cm
10. 如图,在 ABC 中,ED / / BC ,ABC 和 ACB 的平分线分别交 ED 于点 G 、F ,若 FG 2 ,ED 6 ,则EB DC 的值为( )
A. 6B. 7
C. 8D. 9
11. 下列说法正确的是( )
A. 代数式是分式B. 分式中x,y都扩大3倍,分式的值不变
C. 分式的值为0,则x的值为D. 分式是最简分式
12. 如果关于x的方程无解,则m的值是( )
A. 2B. 0C. 1D. –2
13. 在ΔABC中给定下面几组条件:
①∠ACB=30°,BC=4cm,AC=5cm ②∠ABC=30°,BC=4cm,AC=3cm
③∠ABC=90°,BC=4cm,AC=5cm ④∠ABC=120°,BC=4cm,AC=5cm
若根据每组条件画图,则ΔABC不能够唯一确定的是( )
A. ①B. ②C. ③D. ④
14. 若一个凸多边形的每一个外角都等于36°,则这个多边形的内角和是( )
A. 1080°B. 1260°C. 1440°D. 1620°
15. 去一个边长为的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B.
C. D.
16. 如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是( )
A. △ABE≅△ACFB. △BDF≅△CDE
C. 点D在平分线上D. 点D是CF的中点
二.填空题(本大题共3题,总计 12分)
17. 运用完全平方公式计算:(﹣3x+2)2=_________.
18. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是__________
19. 如图,△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线MD相交于D,DE⊥AB交AB的延长线于E,DF⊥AC于F,现有下列结论:①DE=DF;②DE+DF=AD;③DM平分∠EDF;④AB+AC=2AE;其中正确的有________.(填写序号)
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算:
(1)(﹣a2)3÷a4+(a+2)(2a﹣3).
(2)(3a+2b﹣5)(3a﹣2b+5)
21. 化简:.
22. 如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).
(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;
(2)在图中,若B2(﹣4,2)与点B关于一条直线成轴对称,则这条对称轴是 ,此时C点关于这条直线的对称点C2的坐标为 ;
(3)△A1B1C1的面积为 ;
(4)在y轴上确定一点P,使△APB的周长最小.(注:不写作法,不求坐标,只保留作图痕迹)
23. 八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.
(探究与发现)
(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形
(理解与应用)
(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是 .
(3)已知:在△ABC中,D为BC的中点,M为AC的中点,连接BM交AD于F,若AM=MF.求证:BF=AC.
24. (1)若,求的值;
(2)请直接写出下列问题的答案:
①若,则___________;
②若,则__________.
25. 一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
26. 如图,△ABC是等边三角形,AB=6,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)证明:在运动过程中,点D是线段PQ的中点;
(2)当∠BQD=30°时,求AP的长;
(3)在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
怀来县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:B
【解析】:轴对称的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够相互重合,则称该图形为轴对称图形.
根据定义,B选项的图形符合题意.
故选B.
2.【答案】:B
【解析】:解:①,计算正确;
②,计算错误;
③,计算错误;
④,计算正确;
⑤,计算正确.
故选:B.
3.【答案】:B
【解析】:解:利用三角形的三边关系可得应把8cm的木条截成两段,
如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,
而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.
故选:B.
4.【答案】:B
【解析】:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;
当长是3cm的边是腰时,底边长是:13﹣3﹣3=7(cm),而3+3<7,不满足三角形的三边关系.
故底边长:3cm.
故选:B.
5.【答案】:A
【解析】:A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,
B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,
C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,
D. ∵3+6<10,∴长度为3,6,10三条线段不能组成三角形,故该选项不符合题意,
故选A
6.【答案】:A
【解析】:原式,
由结果不含一次项,得到,即,
则的值为8,
故选:A.
7.【答案】:B
【解析】:解:在△ABC是等腰三角形,,平分,
由三线合一性质得:
故选:B.
8.【答案】:B
【解析】::①x3+x=x(x2+1),不符合题意;
②x2-2xy+y2=(x-y)2,符合题意;
③a2-a+1不能分解,不符合题意;
④x2-16y2=(x+4y)(x-4y),符合题意,
故选B
9.【答案】:C
【解析】:解:∵DE是AC的垂直平分线,
∴AD=CD,AC=2AE=6cm,
又∵△ABD的周长=AB+BD+AD=13cm,
∴AB+BD+CD=13cm,
即AB+BC=13cm,
∴△ABC的周长=AB+BC+AC=13+6=19cm.
故选:C.
10.【答案】:C
【解析】:∵ED∥BC,
∴∠EGB=∠GBC,∠DFC=∠FCB,
∵∠GBC=∠GBE,∠FCB=∠FCD,
∴∠EGB=∠EBG,∠DCF=∠DFC,
∴BE=EG,CD=DF,
∵FG=2,ED=6,
∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,
故选C.
11.【答案】:D
【解析】:A. 代数式不是分式,故该选项不正确,不符合题意;
B. 分式中x,y都扩大3倍,分式的值扩大3倍,故该选项不正确,不符合题意;
C. 分式的值为0,则x的值为,故该选项不正确,不符合题意;
D. 分式是最简分式,故该选项正确,符合题意;
故选:D.
12.【答案】:A
【解析】:解:方程去分母得:m+1﹣x=0,
解得x=m+1,
当分式方程分母为0,即x=3时,方程无解,
则m+1=3,
解得m=2.
故选A.
13.【答案】:B
【解析】:解:①BC=4cm,AC=5cm,∠ACB=30°,满足“SAS”,所以根据这组条件画图,△ABC唯一;
②BC=4cm,AC=3cm,∠ABC=30°,根据这组条件画图,△ABC可能为锐角三角形,也可为钝角三角形;
③BC=4cm,AC=5cm,∠ABC=90°;满足“HL”,所以根据这组条件画图,△ABC唯一;
④BC=4cm,AC=5cm,∠ABC=120°,根据这组条件画图,△ABC唯一.
所以,ΔABC不能够唯一确定的是②.
故选:B
14.【答案】:C
【解析】:该多边形的变数为
此多边形内角和为
故选C
15.【答案】:D
【解析】:如下图:
根据题意,得,,
∴
∴剩余部分沿虚线又剪拼成一个矩形后,
∴矩形的面积
故选:D.
【画龙点睛】本题考查了正方形、矩形的知识;解题的关键是熟练掌握正方形、矩形的性质,从而完成求解.
16.【答案】:D
【解析】:解:A、∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;
B∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(ASA),正确;
C、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;
D、无法判定,错误;
故选D.
【画龙点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL. 注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
二. 填空题
17.【答案】: 9x2﹣12x+4
【解析】:原式=9x2﹣12x+4.
故答案为:9x2﹣12x+4.
18.【答案】: 80°
【解析】:∵,
∴,,
设,
∴,
∴,
∵,
∴,
即,
解得:,
.
19.【答案】: ①②④
【解析】:如图所示:连接BD、DC.
①∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴ED=DF.故①正确.
②∵∠EAC=60°,AD平分∠BAC,
∴∠EAD=∠FAD=30°.
∵DE⊥AB,
∴∠AED=90°.
∵∠AED=90°,∠EAD=30°,
∴ED=AD.
同理:DF=AD.
∴DE+DF=AD.故②正确.
③由题意可知:∠EDA=∠ADF=60°.
假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,
又∵∠E=∠BMD=90°,
∴∠EBM=90°.
∴∠ABC=90°.
∵∠ABC是否等于90°不知道,
∴不能判定MD平分∠EDF.故③错误.
④∵DM是BC的垂直平分线,
∴DB=DC.
在Rt△BED和Rt△CFD中
,
∴Rt△BED≌Rt△CFD.
∴BE=FC.
∴AB+AC=AE﹣BE+AF+FC
又∵AE=AF,BE=FC,
∴AB+AC=2AE.故④正确.
故答案为:①②④.
三.解答题
20【答案】:
(1)a2+a﹣6;
(2)9a2﹣4b2+20b﹣25
【解析】:
【小问1详解】
解:(﹣a2)3÷a4+(a+2)(2a﹣3)
=﹣a6÷a4+2a2﹣3a+4a﹣6
=﹣a2+2a2﹣3a+4a﹣6
=a2+a﹣6;
【小问2详解】
解:(3a+2b﹣5)(3a﹣2b+5)
=[3a+(2b﹣5)][3a﹣(2b﹣5)]
=(3a)2﹣(2b﹣5)2
=9a2﹣(4b2﹣20b+25)
=9a2﹣4b2+20b﹣25.
【画龙点睛】本题考查了整式的混合运算,在进行运算时注意符号是否有变化.
21【答案】:
【解析】:
解:原式=
=
= .
22【答案】:
(1)见解析
(2)y轴,(﹣2,3)
(3)
(4)见解析
【解析】:
【小问1详解】
解:如图,△即为所求.
【小问2详解】
解:在图中,若与点关于一条直线成轴对称,则这条对称轴是直线,即为轴,此时点关于这条直线的对称点的坐标为.
故答案为:轴,.
【小问3详解】
解:△的面积为.
故答案为:.
【小问4详解】
解:如图,点即为所求.
【画龙点睛】本题考查作图轴对称变换,三角形的面积,解题的关键是掌握轴对称变换的性质,学会利用轴对称解决最短问题.
23【答案】:
(1)△BDE≌△CDA;(2)12x>5-3,
∴1
相关试卷
这是一份河北省阜城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省大城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省赤城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。