河北省孟村回族自治县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省孟村回族自治县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共23页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图案中,是轴对称图形的是( )
A. B. C. D.
2. 下列图形具有稳定性的是( )
A. B. C. D.
3. 刘零想做一个三角形的框架,她有两根长度分别为6cm和8cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么可以分成两段的是( )
A. 6cm的木条B. 8cm的木条C. 两根都可以D. 两根都不行
4. 下列从左到右的运算是因式分解的是( )
A. 2x2﹣2x﹣1=2x(x﹣1)﹣1B. 4a2+4a+1=(2a+1)2
C. (a+b)(a﹣b)=a2﹣b2D. x2+y2=(x+y)2﹣2xy
5. 如图,已知△ABC是等腰三角形,,平分,若,则的长为( )
A. 2B. 3C. 4D. 8
6. 若一个正多边形的一个内角为,则这个图形为正( )边形
A. 八B. 九C. 七D. 十
7. 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )
A. 7cmB. 3cmC. 9cmD. 5cm
8. 如果把分式中的,都扩大3倍,那么分式的值( )
A. 扩大3倍B. 不变
C. 缩小3倍D. 扩大9倍
9. 如图,在 ABC 中,ED / / BC ,ABC 和 ACB 的平分线分别交 ED 于点 G 、F ,若 FG 2 ,ED 6 ,则EB DC 的值为( )
A. 6B. 7
C. 8D. 9
10. 如图,已知在△ABC中,,,嘉淇通过尺规作图得到,交于点D,根据其作图痕迹,可得的度数为( )
A. 120°B. 110°C. 100°D. 98°
11. 如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A. 60°B. 50°C. 40°D. 30°
12. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
13. 如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于的长为半径画弧,两弧在内交于点H,画射线AH交DC于点M.若,则的大小为( )
A. B. C. D.
14. 下列关于分式的判断中错误的是( )
A. 当时,有意义B. 当时,的值为0
C. 无论x为何值,的值总为正数D. 无论x为何值,不可能得整数值
15. 如图,已知在△ABC中,,点D,E分别在边,上,,,若,则的度数为( )
A. 30°B. 40°C. 50°D. 60°
16. 寒假到了,为了让同学们过一个充实而有意义假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x页,则根据题意可列出方程( )
A. B.
C. D.
二.填空题(本大题共3题,总计 12分)
17. 计算:________.
18. 如图,在平面直角坐标系中,A(4,0),B(0,3),以线段AB为直角边在第一象限内作等腰直角三角形ABC,AB=AC,∠BAC=90°,则点C坐标为_______.
19. 对实数a、b,定义运算☆如下:a☆b=,例如:2☆3=2﹣3=,则计算:[2☆(﹣4)]☆1=_____.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算:
(1)(﹣a2)3÷a4+(a+2)(2a﹣3).
(2)(3a+2b﹣5)(3a﹣2b+5)
21. 先化简,再求值:已知,其中x满足.
22. 在平面直角坐标系中,△ABC三个顶点的坐标为:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1与△ABC关于y轴对称,请写出点A1,B1,C1的坐标(直接写答案):A1 ;B1, ;C1 ;
(2)△ABC的面积为 ;
(3)在y轴上画出点P,使PB+PC最小.
23. 如图,在△ABC中,,D是的中点,垂直平分,交于点E,交于点F,M是直线上的动点.
(1)当时.
①若,则点到的距离为________
②若,,求的周长;
(2)若,且△ABC的面积为40,则的周长的最小值为________.
24. 教科书中这样写道:“我们把多项式及叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.能解决一些与非负数有关的问题或求代数式最大值,最小值等.
例如:分解因式:.
原式=
例如.求代数式的最小值.
原式=,可知当时,有最小值,最小值是.
(1)分解因式:________;
(2)试说明:x、y取任何实数时,多项式的值总为正数;
(3)当m,n为何值时,多项式有最小值,并求出这个最小值.
25. 一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.
(1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
26. 如图,△ABC中,AB=BC=AC=8cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
孟村回族自治县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:C
【解析】:A选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
B选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
C选项轴对称图形,符合题意.
D选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
2.【答案】:A
【解析】:A.具有稳定性,符合题意;
B.不具有稳定性,故不符合题意;
C.不具有稳定性,故不符合题意;
D.不具有稳定性,故不符合题意,
故选:A.
3.【答案】:B
【解析】:解:利用三角形的三边关系可得应把8cm的木条截成两段,
如将8cm的线段分成3cm和5cm或4cm和4cm,所截成的两段线段之和大于6,所以,可以,
而6cm的线段无论如何分,分成的两段线段之和都小于8,所以,不可以.
故选:B.
4.【答案】:B
【解析】:解:A、没把一个多项式转化成几个整式积的形式,故本选项错误;
B、把一个多项式转化成几个整式积的形式,故本选项正确;
C、是整式的乘法,故本选项错误;
D、没把一个多项式转化成几个整式积的形式,故本选项错误;
故选:B.
5.【答案】:B
【解析】:解:在△ABC是等腰三角形,,平分,
由三线合一性质得:
故选:B.
6.【答案】:D
【解析】:解:设所求正n边形边数为n, 则
解得
故答案为:D.
7.【答案】:B
【解析】:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;
当长是3cm的边是腰时,底边长是:13﹣3﹣3=7(cm),而3+3<7,不满足三角形的三边关系.
故底边长:3cm.
故选:B.
8.【答案】:B
【解析】:.
故选:B.
【画龙点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.
9.【答案】:C
【解析】:∵ED∥BC,
∴∠EGB=∠GBC,∠DFC=∠FCB,
∵∠GBC=∠GBE,∠FCB=∠FCD,
∴∠EGB=∠EBG,∠DCF=∠DFC,
∴BE=EG,CD=DF,
∵FG=2,ED=6,
∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,
故选C.
10.【答案】:B
【解析】:根据作图痕迹可知,是∠ABC的平分线,
∵,,
∴
∵是∠ABC的平分线,
∴
∴
故选:B.
11.【答案】:C
【解析】:解:∵FE⊥DB,
∵∠DEF=90°,
∵∠1=50°,
∴∠D=90°﹣50°=40°,
∵AB∥CD,
∴∠2=∠D=40°.
故选C.
12.【答案】:A
【解析】:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
13.【答案】:B
【解析】:解:四边形是长方形,
,
,
由题意可知,平分,
,
,
故选:B.
14.【答案】:D
【解析】:A选项,当时,有意义,故不符合题意;
B选项,当时,的值为0,故不符合题意;
C选项,,则无论x为何值,的值总为正数,故不符合题意;
D选项,当时,,故符合题意;
故选:D.
15.【答案】:C
【解析】:如图,过点D作于点F.
∴在△DBE和中,
∴△DBE≅△DFC(AAS),
∴,
∴AD为的角平分线,
∴,
∴.
故选C.
16.【答案】:D
【解析】:解:设小芳每天看书x页,则小荣每天看页,
由题意得: ,
故选:D.
二. 填空题
17.【答案】: 0.5
【解析】:解:原式
.
故答案为:0.5.
18.【答案】: (7,4)
【解析】:解:作CD⊥x轴于点D,则∠CDA=90°,
∵A(4,0),B(0,3),
∴
是等腰直角三角形,∠BAC=90°,
又∵∠BAD+∠ABO=90°,
∴∠ABO=∠CAD,
∠BAD+∠CAD=90°,
在△BOA和△ADC中,
∴△BOA≌△ADC(AAS),
∴BO=AD=3,OA=DC=4,
∴点C的坐标为(7,4);
故答案为:(7,4)
19.【答案】: 16
【解析】:由题意可得:
[2☆(﹣4)]☆1
=2﹣4☆1
=☆1
=()﹣1
=16,
故答案为16.
【画龙点睛】本题考查了新定义运算、负整数指数幂,弄清题意,理解新定义运算的规则是解决此类题目的关键.
三.解答题
20【答案】:
(1)a2+a﹣6;
(2)9a2﹣4b2+20b﹣25
【解析】:
【小问1详解】
解:(﹣a2)3÷a4+(a+2)(2a﹣3)
=﹣a6÷a4+2a2﹣3a+4a﹣6
=﹣a2+2a2﹣3a+4a﹣6
=a2+a﹣6;
【小问2详解】
解:(3a+2b﹣5)(3a﹣2b+5)
=[3a+(2b﹣5)][3a﹣(2b﹣5)]
=(3a)2﹣(2b﹣5)2
=9a2﹣(4b2﹣20b+25)
=9a2﹣4b2+20b﹣25.
【画龙点睛】本题考查了整式的混合运算,在进行运算时注意符号是否有变化.
21【答案】:
;
【解析】:
解:原式=
原式.
22【答案】:
(1)(3,2)、(4,﹣3)、(1,﹣1);(2)6.5;(3)见解析.
【解析】:
(1)根据点关于y轴对称的性质得:;
(2)如图可知,
则;
(3)由题意可得y轴是线段的垂直平分线,则
因此
由三角形的三边关系得
故当三点共线时,最小,且最小值为
连接,与y轴的交点即为所求点P(如图所示).
【画龙点睛】本题考查了平面直角坐标系中点坐标的对称变换、三角形的三边关系,理解掌握点的坐标的对称变换是解题关键.
23【答案】:
(1)①1;②18
(2)14
【解析】:
【小问1详解】
①解:如图1,作于
∵,D是BC的中点
∴是的垂直平分线
∴,
∵
∴
∵,
∴
在△NBM和△ECM中
∵
∴
∴
故答案为:1.
②解:∵D是的中点,,
∴是的垂直平分线,
∴,
∴,
∴是等边三角形,
∴
∴的周长为
故答案为:18.
【小问2详解】
解:如图2,连接
∵ ,
解得
∵垂直平分
∴关于直线的对称点为
∴由两点之间线段最短可知与直线的交点即为
∴的周长的最小值为
∴的周长的最小值为14.
24【答案】:
(1)
(2)见解析
(3)当时,多项式有最小值
【解析】:
【小问1详解】
解:
;
故答案为:
【小问2详解】
解:
,
∵,
∴,
∴原式的值总为正数;
【小问3详解】
解:
当,即时,
原式取最小值-3.
∴当时,多项式有最小值.
25【答案】:
(1)甲,乙两公司单独完成此项工程,各需20天,30天;
(2)让一个公司单独完成这项工程,甲公司的施工费较少.
【解析】:
解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.
根据题意,得,
解得x=20.
经检验,x=20是方程的解且符合题意.
1.5 x=30.
∴甲,乙两公司单独完成此项工程,各需20天,30天.
(2)设乙公司每天的施工费为y元,则甲公司每天的施工费为(y+1500)元,
依题意得:12y+12(y+1500)=102000,
解得:y=3500.
∴甲公司单独完成这项工程所需施工费为(3500+1500)×20=100000(元),
乙公司单独完成这项工程所需施工费为3500×30=105000(元).
∵100000<105000,
∴若让一个公司单独完成这项工程,甲公司的施工费较少.
26【答案】:
(1)点M,N运动8秒时,M、N两点重合;
(2)点M、N运动秒时,可得到等边三角形△AMN;
(3)当M、N运动秒时,得到以MN为底边的等腰三角形AMN
【解析】:
【小问1详解】
解:设运动t秒,M、N两点重合,
根据题意得:2t﹣t=8,
∴t=8,
答:点M,N运动8秒时,M、N两点重合;
【小问2详解】
解:设点M、N运动x秒时,可得到等边三角形△AMN,
∵△AMN是等边三角形,
∴AN=AM,
∴x=8﹣2x,
解得:x=,
∴点M、N运动秒时,可得到等边三角形△AMN;
【小问3详解】
设M、N运动y秒时,得到以MN为底边的等腰三角形AMN.
∵△ABC是等边三角形,
∴AB=AC,∠C=∠B=60°,
∵△AMN是以MN为底边的等腰三角形,
∴AM=AN,
∴∠AMN=∠ANM,
∵∠C=∠B,AC=AB,
∴△ACN≌△ABM(AAS),
∴CN=BM,
∴CM=BN,
∴y﹣8=8×3﹣2y,
∴y=.
答:当M、N运动秒时,得到以MN为底边等腰三角形AMN
【画龙点睛】本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,利用方程的思想解决问题是本题的关键.
相关试卷
这是一份河北省阜城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省大城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省赤城县2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共21页。试卷主要包含了选择题等内容,欢迎下载使用。