河北省邢台市信都区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解)
展开
这是一份河北省邢台市信都区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图形中,是轴对称图形的是( )
A. B. C. D.
2. 下列运算正确是( )
A. B. C. D.
3. 某类新型冠状病毒的直径约为0.000000125米,将0.000000125米用科学记数法表示为( )
A. 米B. 米
C. 米D. 米
4. 如图,下列条件中,不能证明△ABC≌△DCB的是( )
A. AB=DC,AC=DBB. AB=DC,∠ABC=∠DCB
C. BO=CO,∠A=∠DD. AB=DC,∠DBC=∠ACB
5. 如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是( )
A. SSSB. SASC. AASD. ASA
6. 若把分式中的和都扩大5倍,那么分式的值( )
A. 扩大5倍B. 不变C. 缩小5倍D. 缩小25倍
7. 如图,∠1=∠2,要说明△ABD≌△ACD,需从下列条件中选一个,错误的选法是( )
A. ∠ADB=∠ADCB. ∠B=∠CC. DB=DCD. AB=AC
8. 如果把分式中的,都扩大3倍,那么分式的值( )
A. 扩大3倍B. 不变
C. 缩小3倍D. 扩大9倍
9. 如图,在 ABC 中,ED / / BC ,ABC 和 ACB 的平分线分别交 ED 于点 G 、F ,若 FG 2 ,ED 6 ,则EB DC 的值为( )
A. 6B. 7
C. 8D. 9
10. 如图,在长方形ABCD中,连接AC,以A为圆心,适当长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,大于的长为半径画弧,两弧在内交于点H,画射线AH交DC于点M.若,则的大小为( )
A. B. C. D.
11. 如图,已知在△ABC中,,,嘉淇通过尺规作图得到,交于点D,根据其作图痕迹,可得的度数为( )
A. 120°B. 110°C. 100°D. 98°
12. 下列关于分式的判断中错误的是( )
A. 当时,有意义B. 当时,的值为0
C. 无论x为何值,的值总为正数D. 无论x为何值,不可能得整数值
13. 如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A. 84°B. 60°C. 48°D. 43°
14. △ABC中,∠C=90°,∠A的平分线交BC于点D,如果AB=8,CD=3,则△ABD的面积为( )
A. 24B. 12C. 8D. 6
15. 如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为24,面积之和为12,则长方形ABCD的面积为( )
A. 4B. C. D. 6
16. 如图,在中,,,,垂足分别为D,E,AD,CE交于点H,且,下列四个结论:①;②;③;④是等腰三角形,你认为正确结论序号是( )
A. ①②③B. ①③④C. ②③④D. ①②③④
二.填空题(本大题共3题,总计 12分)
17. 计算:________.
18. 已知x,y满足.
(1)的值为___________;
(2)若,则的值为___________.
19. 如图,在正方形中,,延长到点,使,连接,动点从点出发,以每秒的速度沿向终点运动.设点的运动时间为秒,当和全等时,的值为 __.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算:
(1)
(2)
21. 分解因式:
(1)
(2)
22. 在平面直角坐标系中,△ABC三个顶点的坐标为:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1与△ABC关于y轴对称,请写出点A1,B1,C1的坐标(直接写答案):A1 ;B1, ;C1 ;
(2)△ABC的面积为 ;
(3)在y轴上画出点P,使PB+PC最小.
23. 如图,ΔABC,ΔADE均是等边三角形,点B,D,E三点共线,连按CD,CE;且CD⊥BE.
(1)求证:BD=CE;
(2)若线段DE=3,求线段BD的长.
24. 阅读以下材料
材料:因式分解:
解:将“”看成整体,令,则原式
再将“A”还原,得原式
上述解题用到是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:
(1)因式分解:______;
(2)因式分解:;
25. 某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餍椅的总数量不超过200张.该商场计划将餐桌成套(一张餐桌和四张餐椅配成一套)销售,多余的桌或椅以零售方式销售.请问当进货量最大时获得的利润是多少?
26.
(1)【自主学习】填空:
如图1,点是的平分线上一点,点A在上,用圆规在上截取,连接,可得 ,其理由根据是 ;
(2)【理解运用】如图2,在中,,,平分,试判断和、之间的数量关系并写出证明过程.
(3)【拓展延伸】如图3,在中,,,分别是,的平分线,,交于点,若,,请直接写出的长.
邢台市信都区2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:B
【解析】:轴对称的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够相互重合,则称该图形为轴对称图形.
根据定义,B选项的图形符合题意.
故选B.
2.【答案】:B
【解析】:A选项,,故不符合题意;
B选项,,故符合题意;
C选项,,故不符合题意;
D选项,,故不符合题意;
故选:B.
3.【答案】:B
【解析】:可知a=1.25,从左起第一个不为0的数字前面有7个0,所以n=7,
∴0.000000125=1.25×10−7 .
故选:B.
4.【答案】:D
【解析】:A.由“SSS”可以判定△ABC≌△DCB,故本选项错误;
B.由“SAS”可以判定△ABC≌△DCB,故本选项错误;
C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;
D.由“SSA”不能判定△ABC≌△DCB,故本选项正确.
故选D.
5.【答案】:D
【解析】:解:由图可知,三角形两角及夹边可以作出,
所以,依据是ASA.
故选:D.
6.【答案】:C
【解析】:把分式中的和都扩大5倍,
即,
即得到的式子比原式缩小了5倍.
故选:C
7.【答案】:C
【解析】:解:由题意可知∠1=∠2,AD=AD,
对于条件∠ADB=∠ADC,可以利用ASA证明△ABD≌△ACD,故选项A不符合题意;
对于条件∠B=∠C,可以利用AAS证明△ABD≌△ACD,故选项B不符合题意;
对于条件DB=DC,不可以利用SSA证明△ABD≌△ACD,故选项C符合题意;
对于条件AB=AC,可以利用SAS证明△ABD≌△ACD,故选项D不符合题意;
故选C.
8.【答案】:B
【解析】:.
故选:B.
【画龙点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.
9.【答案】:C
【解析】:∵ED∥BC,
∴∠EGB=∠GBC,∠DFC=∠FCB,
∵∠GBC=∠GBE,∠FCB=∠FCD,
∴∠EGB=∠EBG,∠DCF=∠DFC,
∴BE=EG,CD=DF,
∵FG=2,ED=6,
∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,
故选C.
10.【答案】:B
【解析】:解:四边形是长方形,
,
,
由题意可知,平分,
,
,
故选:B.
11.【答案】:B
【解析】:根据作图痕迹可知,是∠ABC的平分线,
∵,,
∴
∵是∠ABC的平分线,
∴
∴
故选:B.
12.【答案】:D
【解析】:A选项,当时,有意义,故不符合题意;
B选项,当时,的值为0,故不符合题意;
C选项,,则无论x为何值,的值总为正数,故不符合题意;
D选项,当时,,故符合题意;
故选:D.
13.【答案】:D
【解析】:∵△ABC≌△ADE,∠BAD=94°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣94°)=43°,
∵AE//BD,
∴∠DAE=∠ADB=43°,
∴∠BAC=∠DAE=43°.
故选:D.
14.【答案】:B
【解析】:作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC,
∴DE=CD=3,
∴△ABD的面积为×3×8=12,
故选:B.
15.【答案】:B
【解析】:解:设AB=a,AD=b,由题意得8a+8b=24,2a2+2b2=12,
即a+b=3,a2+b2=6,
∴,
即长方形ABCD的面积为,
故选:B.
16.【答案】:C
【解析】:解:①假设∠ABC=45°成立,
∵AD⊥BC,
∴∠BAD=45°,
又∠BAC=45°,
矛盾,所以∠ABC=45°不成立,故本选项错误;
∵CE⊥AB,∠BAC=45度,
∴AE=EC,
在△AEH和△CEB中,
,
∴△AEH≌△CEB(SAS),
∴AH=BC,故选项②正确;
又EC-EH=CH,
∴AE-EH=CH,故选项③正确.
∵AE=CE,CE⊥AB,所以△AEC是等腰直角三角形,故选项④正确.
∴②③④正确.
故选:C.
二. 填空题
17.【答案】: 0.5
【解析】:解:原式
.
故答案为:0.5.
18.【答案】: ①. 1; ②.
【解析】:(1),
,
,
;
(2),
,
.
故答案为:(1)1;(2).
19.【答案】: 2或7
【解析】:∵正方形ABCD,
∴
是直角三角形,
为直角三角形,
点只能在上或者上,
当点在上时,如图,当时,有,
,
,
,
当点在上时,则当时,有,
,
故答案为:2或7.
三.解答题
20【答案】:
(1)
(2)
【解析】:
【小问1详解】
解:原式
.
【小问2详解】
解:原式
.
21【答案】:
(1)
(2)
【解析】:
【小问1详解】
解:原式
.
【小问2详解】
解:原式
.
22【答案】:
(1)(3,2)、(4,﹣3)、(1,﹣1);(2)6.5;(3)见解析.
【解析】:
(1)根据点关于y轴对称的性质得:;
(2)如图可知,
则;
(3)由题意可得y轴是线段的垂直平分线,则
因此
由三角形的三边关系得
故当三点共线时,最小,且最小值为
连接,与y轴的交点即为所求点P(如图所示).
【画龙点睛】本题考查了平面直角坐标系中点坐标的对称变换、三角形的三边关系,理解掌握点的坐标的对称变换是解题关键.
23【答案】:
(1)见解析 (2)6
【解析】:
【小问1详解】
证明:∵△ABC、△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
∴△ABD≌△ACE(SAS),
∴BD=CE;
【小问2详解】
解:∵△ADE是等边三角形,
∴∠ADE=∠AED=60°,
∵点B,D,E三点共线
∴∠ADB=120°,
∵△ABD≌△ACE,
∴∠AEC=∠ADB=120°,
∴∠CED=∠AEC-∠AED=60°,
∵CD⊥BE,
∴∠CDE=90°,
∴∠DCE=30°,
∴BD=CE=2DE=6.
24【答案】:
(1)
(2)
【解析】:
【小问1详解】
解:
=
=;
故答案为:;
【小问2详解】
设,
原式,
将A还原,则原式;
25【答案】:
(1)150
(2)当进货量最大时获得的利润是7200元
【解析】:
(1)根据题意确定等量关系列方程即可.
(2)首先设购进桌子的数量为x,求出其取值范围,再列出总利润和x的函数关系,根据一次函数性质求最大值即可.
【小问1详解】
解:根据题意,得:,解得:
经检验符合实际且有意义.
∴表中a的值为150.
【小问2详解】
解:设餐桌购进x张,则餐椅购进张,
依题意列:
解得:
设利润为W元,
则
∵
∴W随x的增大而增大
∴当 x=30时,W 有最大值
此时 .
答:当进货量最大时获得的利润是7200元.
【画龙点睛】本题考查了分式方程和一元一次不等式以及一次函数的性质,解题的关键是理解题意,找出等量关系列出方程,再根据一次函数性质求最大利润.
26【答案】:
(1),SAS
(2),证明见解析
(3)5
【解析】:
(1)由角平分线的定义得出,根据可证明;
(2)先截取,连接,根据判定,得出,,,进而得出结论;
(3)在上取一点,使,证明,由全等三角形的性质得出,证明,由全等三角形的性质得出,则可求出答案.
【小问1详解】
解:点是的平分线上一点,
,
在和中,
,
,
故答案为:;;
【小问2详解】
.
证明:在上截取,
平分,
,
在和中,
,
,
,AD=DE,
,
,
,
即,
,
,
,
.
【小问3详解】
在上取一点,使,
在中,,
,
,
,
,
,
平分,
,
在和中,
,
,
,
,
,
是的平分线,
,
在和中,
,
,
,
.
【画龙点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的判定与性质,角平分线的性质以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据线段的和差关系进行推导.原进价(元/张)
零售价(元/张)
成套售价(元/套)
餐桌
a
270
500元
餐椅
70
相关试卷
这是一份河北省邢台市南和区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份河北省邢台市任泽区2022-2023学年八年级(上)数学期末模拟测试(含答案及详解),共24页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份2024年河北省邢台市信都区中考冲刺模拟考试数学试卷(二),共2页。